
 5 Regular (Category 1) State Machines

 5.1 Introduction

 We know that, from a hardware perspective, state machines can be classifi ed into two
types, based on their input connections , as follows.

 1) Moore machines: The input, if it exists, is connected only to the logic block that
computes the next state.
 2) Mealy machines: The input is connected to both logic blocks, that is, for the next
state and for the actual output.

 In Section 3.6 we introduced a new classifi cation, also from a hardware point of view,
based on the transition types and nature of the outputs , as follows (see fi gure 5.1).

 1) Regular (category 1) state machines: This category, illustrated in fi gure 5.1a and
studied in chapters 5 to 7, consists of machines with only untimed transitions and
outputs that do not depend on previous (past) output values.
 2) Timed (category 2) state machines: This category, illustrated in fi gure 5.1b and
studied in chapters 8 to 10, consists of machines with one or more transitions that
depend on time (so they can have all four transition types: conditional, timed,
conditional-timed, and unconditional). However, all outputs are still independent
from previous (past) output values.
 3) Recursive (category 3) state machines: This category is illustrated in fi gure 5.1c and
studied in chapters 11 to 13. It can have all four types of transitions, but one or more
outputs depend on previous (past) output values. Recall that the outputs are produced
by the FSM ’ s combinational logic block, so the current output values are “ forgotten ”
after the machine leaves that state; consequently, to implement a recursive (recurrent)
machine, some sort of extra memory is needed.

 As seen in this and in upcoming chapters, the classifi cations mentioned above
(no other classifi cation is needed) will immensely ease the design of hardware-based

82 Chapter 5

state machines. The two fundamental decisions before starting a design are then the
following:

 1) Decide the state machine category (regular, timed, or recursive).
 2) Next, decide the state machine type (Moore or Mealy).

 It is important to recall, however, that regardless of the machine category and type,
the state transition diagram must fulfi ll three fundamental requisites (seen in section
1.3):

 1) It must include all possible system states.
 2) All state transition conditions must be specifi ed (unless a transition is uncondi-
tional) and must be truly complementary.
 3) The list of outputs must be exactly the same in all states (standard architecture).

 5.2 Architectures for Regular (Category 1) Machines

 The architectures for category 1 machines are summarized in fi gure 5.2 . These repre-
sentations follow the style of fi gures 3.1b,d, but the style of fi gures 3.1a,c could be
used equivalently. The output register (fi gure 5.2c) is optional. The four possible con-
structions, listed in fi gure 5.2d , are summarized below.

 Regular Moore machine (fi gure 5.2a): In this case, the input (if it exists) is connected
only to the logic block for the next state. Consequently, the output depends only on
the state in which the machine is (in other words, for each state, the output value in
unique), resulting a synchronous behavior (see details in section 3.5). Because modern
designs are generally synchronous, this implementation is preferred whenever the
application permits.

 Figure 5.1
 State machine categories (from a hardware perspective).

Regular (Category 1) State Machines 83

 Regular Mealy machine (fi gure 5.2b): In this case, the input is connected to both
logic blocks, so it can affect the output directly, resulting an asynchronous behavior.
Therefore, the machine can have more than one output value for the same state
(section 3.5).
 Out-registered (pipelined) Moore machine: This consists of connecting the register of
 fi gure 5.2c to the output of the Moore machine of fi gure 5.2a . As seen in sections 2.5
and 2.6, two fundamental reasons for doing so are glitch removal and pipelined con-
struction. As a result, the fi nal circuit ’ s output will be delayed with respect to the
original machine ’ s output by either one clock period (if the same clock edge is
employed in the state register and in the output register) or by one-half of a clock
period (if different clock edges are used). Note that the resulting circuit is order-2
synchronous because the original Moore machine was already a registered circuit (in
other words, the input – output transfer occurs after two clock edges — see details in
section 3.5). If in a given application this extra register is needed but its consequent
extra delay is not acceptable, the next alternative can be used.
 Out-registered (pipelined) Mealy machine: This consists of connecting the register of
 fi gure 5.2c to the output of the Mealy machine of fi gure 5.2b . The reasons for
doing so are the same as for Moore machines. The resulting circuit is order-1 synchro-
nous because the original Mealy machine is asynchronous. Consequently, the overall

 Figure 5.2
 Regular (category 1) state machine architectures for (a) Moore and (b) Mealy types. (c) Optional

output register. (d) Resulting circuits.

84 Chapter 5

behavior (with the output register included) is similar to that of a pure Moore machine
(without the output register — see details in section 3.5).

 5.3 Number of Flip-Flops

 In general, and particularly in large designs, it is diffi cult to estimate the number of
logic gates that will be needed to implement the desired solution. However, it is always
possible to determine, and exactly , the number of fl ip-fl ops.

 In the case of sequential circuits implemented as category 1 state machines, there
are two demands for DFFs, as follows (see state-encoding options in section 3.7).

 1) For the state register (see nx_state and pr_state in fi gure 5.2a , which are the state
memory fl ip-fl ops ’ input and output, respectively; below, M FSM is the number of states):

 For sequential or Gray encoding: N FSM = log 2 M FSM . Example: M FSM = 25 → N FSM = 5.
 For Johnson encoding: N FSM = M FSM /2 . Example: M FSM = 25 → N FSM = 13.
 For one-hot encoding: N FSM = M FSM . Example: M FSM = 25 → N FSM = 25.

 2) For the output register (fi gure 5.2c , optional, with b output bits):
 N output = b output . Example: b output = 16 → N output = 16.

 Hence, the total is N total = N FSM + N output . In the examples that follow, as well as in the
actual designs with VHDL and SystemVerilog, the number of fl ip-fl ops will be often
examined.

 5.4 Examples of Regular (Category 1) Machines

 A series of regular FSMs are presented next. Several of these examples are designed
later using VHDL (chapter 6) and SystemVerilog (chapter 7).

 5.4.1 Small Counters
 Counters are well-known circuits easily designed without the FSM approach using
VHDL or SystemVerilog. Moreover, a counter might have thousands of states, render-
ing it impractical for representation as a regular state machine. Nevertheless, for
designing counters without the help of any EDA tool (as done in sections 3.3 and 3.4),
the FSM model can be very helpful, particularly if the counter is not too big and has
several control inputs such as enable and up-down. Moreover, the implementation of
such counters can be very illustrative of the FSM approach. For these reasons, an
example is included in this section.

 A 1-to-5 counter with enable and up-down controls is presented in fi gure 5.3 (just
to practice, equivalent detailed and simplifi ed representations are shown — recall fi gure
1.4). The circuit counts if ena = ‘ 1 ’ , or stops (and holds its last output value) otherwise.
If up = ‘ 1 ’ , the circuit counts from 1 to 5, restarting then automatically from 1; oth-

Regular (Category 1) State Machines 85

erwise, it counts from 5 down to 1, restarting then automatically from 5. Because
counters are inherently synchronous, the Moore model is the natural choice for
their implementations.

 Because this machine has M FSM = 5 states, and the optional output register is gener-
ally not needed in counters, the number of fl ip-fl ops required to implement it (see
section 5.3) is N FSM = 3 if sequential, Gray, or Johnson encoding is used, or 5 for one-hot
encoding.

 VHDL and SystemVerilog implementations for this counter are presented in sec-
tions 6.6 and 7.5, respectively.

 5.4.2 Parity Detector
 This example concerns a circuit that detects the parity of a serial data stream. As
depicted in fi gure 5.4a , x is the serial data input, and y is the circuit ’ s response. The
output must be y = ‘ 1 ’ when the number of ‘ 1 ’ s in x is odd.

 A basic solution for the case when a reset pulse is applied before every calculation
starts is presented in fi gure 5.4b . In this case the parity value is the value of y after
the last bit has been presented to the circuit (before a new reset pulse is applied). Note

 Figure 5.3
 Detailed (a) and simplifi ed (b) representations for a 1-to-5 counter with enable and up-down

controls.

 Figure 5.4
 Parity detector. (a) Circuit ports. (b) State transition diagram. (c) Hardware block diagram.

86 Chapter 5

the arrangement in fi gure 5.4c , based on the material seen in section 3.11; when the
reset pulse goes up (which subsequently resets the FSM), it causes the value of y to be
stored in the auxiliary register, producing y_reg , which stays stable (constant) until a
new calculation is completed (i.e., a new reset pulse occurs).

 A slightly different parity detection problem is depicted in fi gure 5.5 , which has
to be reset only at power-up (thus a more usual situation). A data-valid (dv) bit indi-
cates the extension of the data vector whose parity must be calculated (when dv goes
up, a new vector begins, fi nishing when dv returns to zero). It is assumed that after a
calculation (data stream) is completed, the machine must keep displaying the fi nal
parity value until a new vector is presented, as depicted in the illustrative timing
diagram of fi gure 5.5b , which shows two vectors of size 5 bits each, with fi nal parity
 y = ‘ 1 ’ for vector 1 and y = ‘ 0 ’ for vector 2.

 A Moore machine that complies with these specifi cations is presented in fi gure 5.5c
(note that in this example dv and x are updated at the negative clock edge). Because
of dv , this machine does not need to be reset before a new calculation starts. Indeed,
depending on the encoding scheme (sequential or Gray, for example), this circuit
might not need a reset signal at all because deadlock cannot occur (the unused code-
word will converge back to one of the machines ’ states) and dv will cause the compu-
tations to be correct even if the initial state is arbitrary (see exercise 3.11).

 5.4.3 Basic One-Shot Circuit
 One-shot circuits are circuits that, when triggered, generate a single voltage or current
pulse, possibly with a fi xed time duration. This section discusses the particular case
in which the time duration of the output is exactly one clock period. In this example
it will be considered that the input lasts at least one clock period; generic cases are
studied in sections 8.11.8 to 8.11.10, which deal specifi cally with triggered circuits.

 Figure 5.5
 Another parity detector. (a) Circuit ports. (b) Illustrative time behavior. (c) State transition

diagram.

Regular (Category 1) State Machines 87

 In fact, a one-shot circuit (not employing the FSM approach) was already seen in
chapter 2 (fi gure 2.10), with its schematic repeated in fi gure 5.6a . This option, however,
is fi ne only if the triggering input (x) is synchronous; otherwise, the output pulse could
last less than T clk . For it to work with asynchronous inputs, another DFF is needed, as
shown in fi gure 5.6b . A version with a full synchronizer (section 2.3) is shown in fi gure
5.6c .

 The general operating principle is illustrated in fi gure 5.7 . The circuit ports are
shown in fi gure 5.7a , where x is the triggering input and y is the one-shot output. An
illustrative timing diagram is presented in fi gure 5.7b , with x having an arbitrary dura-
tion and y lasting exactly one clock period. Pulse 1 lasts less than T clk but happened
to fall under a positive clock edge, so it was detected. This is obviously not guaranteed
to happen, as illustrated for pulse 2. Only if the duration is T clk or longer, as for pulse
3, is the triggering of y guaranteed. Note that x and y are uncorrelated (mutually
asynchronous) if x and clk are uncorrelated.

 A solution using a regular (category 1) Moore machine is presented in fi gure 5.7c .
Note that it stays in state B during only one clock period; because y = ‘ 1 ’ occurs only
in that state, the desired pulse results. An inferior solution is presented in fi gure 5.7d
(see exercise 5.5).

 Figure 5.6
 Trivial one-shot circuits. (a) Basic version, for synchronous input only. (b) Preceded by a

synchronizing DFF, so the input can be asynchronous. (c) With a two-stage synchronizer.

 Figure 5.7
 One-shot state machine. (a) Circuit ports. (b) Example of expected behavior. (c) State transition

diagram. (d) An inferior solution (exercise 5.5).

88 Chapter 5

 As a fi nal comment, let us consider the circuit of fi gure 5.6b , which is a kind of
optimized synchronous version of the one-shot circuit. Because the solution in fi gure
5.7c is also synchronous (all Moore machines are), would you expect the circuit that
implements this state machine to be equal or at least similar to that of fi gure 5.6b ?
(See exercise 5.5.)

 5.4.4 Temperature Controller
 Figure 5.8a shows a circuit diagram for a temperature controller of an air conditioning
system. In the upper branch, the room temperature is sensed by some type of tem-
perature sensor and converted to digital format by the ADC (analog-to-digital con-
verter), producing the signal T room . In the lower branch, the user, by means of two
pushbuttons (up , dn), selects the reference (desired) temperature, producing the signal
 T ref . Depending on the values of these two signals, the controller core decides whether
to heat the room (h = ‘ 1 ’), to cool it (c = ‘ 1 ’), or to stay in the idle state.

 Because mechanical switches are subject to bounces before they fi nally settle in
the proper position, the pushbuttons must be debounced. However, debouncers are
timed circuits, thus requiring a timed (category 2) machine to be implemented. Such
machines are seen in chapter 8, so for now let us just consider that the proper value
is produced for T ref (the design of this block is treated in section 8.11.4). For example,
 T ref could be selected in the 60 ° F to 90 ° F range with an initial value (on power-up,
defi ned by the reset signal) of 73 ° F, if degrees Fahrenheit are used, or in the 15 ° C to
30 ° C range with a default value of 23 ° C, if degrees centigrade are employed instead.

 An important addition to the system is depicted in fi gure 5.8b , which consists of
a display accessed by means of a multiplexer. The display shows the room temperature
while the selection pushbutton (sel , with no need for debouncing, not shown in the
fi gure) is at rest (sel = ‘ 0 ’) or the reference temperature while it is pressed (sel = ‘ 1 ’).

 A state machine for the controller core, using the Moore approach, is depicted in
 fi gure 5.8c . Δ T represents the system hysteresis, which is generally a fi xed circuit

 Figure 5.8
 Temperature controller. (a) Overall circuit diagram. (b) Display driver. (c) State machine for the

controller core block.

Regular (Category 1) State Machines 89

parameter. For example, if Δ T = 1 ° F, the room temperature will be kept within T ref ±
1 ° F. By comparing T room to T ref and taking into account the hysteresis, the machine will
be able to produce the proper values for h and c .

 Finally, note that the inputs from the pushbuttons are asynchronous with respect
to the system clock, which could, in principle, cause metastability (see section 2.3).
This, however, is prevented here by the debouncer (section 8.11.3).

 5.4.5 Garage Door Controller
 This example presents a garage door controller that operates as follows. If the door is
completely closed or completely open and the remote is activated, the motor is turned
on in the direction to open or close it, respectively. If the door is opening or closing
and the remote is activated, the door stops. If the remote is activated again, the motor
is turned on to move the door in the opposite direction.

 The circuit ports are depicted in fi gure 5.9a , where remt (command from the remote
control), sen1 (door-open sensor), and sen2 (door-closed sensor) are the inputs (plus
the conventional clk and rst signals), and ctr (control) is the output. Note that ctr has
two bits; ctr (1) turns the motor on (‘ 1 ’) or off (‘ 0 ’), whereas ctr (0) defi nes its direction,
opening (‘ 0 ’) or closing (‘ 1 ’) the door (thus the value of the latter does not matter
when the former is ‘ 0 ’).

 A preliminary state diagram is shown in fi gure 5.9b . The transition control signals
are remt , sen1 , and sen2 . Note that this machine complies with all three requisites of

 Figure 5.9
 Garage door controller. (a) Circuit ports. (b) Bad solution (with state-bypass). (c) Good

solution.

90 Chapter 5

section 1.3. However, it exhibits a major problem, which is state bypass (see section
4.2.4). For example, if the door is closed and a long (lasting several clock cycles) remt
= ‘ 1 ’ command is received, the machine goes around the entire loop. Of course, if a
one-shot circuit (section 5.4.3) is used to reduce the duration of remt to a single clock
period, then this machine is fi ne.

 A corrected diagram is presented in fi gure 5.9c , containing additional states that
wait for remt to return to zero before proceeding, thus eliminating the state-bypass
problem. This is a Moore machine because there is no reason to employ an asynchro-
nous solution in this kind of application. Glitches at the output are not a problem
here, so the optional output register is not needed.

 A good practice in this kind of application is to include debouncers for the signals
coming from the remote control and from the sensors, which not only eliminate the
need for synchronizers but also prevent short input glitches (due to lightning or the
switching of large electric currents, for example) from activating the machine (in this
case, it has to be a full debouncer, like that in section 8.11.3, for example).

 Because the machine of fi gure 5.9c has M FSM = 8 states, the required number of DFFs
is N FSM = 3 if sequential or Gray encoding is used, 4 for Johnson, or 8 for one-hot.

 VHDL and SystemVerilog implementations for this garage door controller are pre-
sented in sections 6.7 and 7.6, respectively.

 5.4.6 Vending Machine Controller
 This example deals with a controller for a vending machine. It is assumed that it sells
candy bars for the single price of $0.40, accepting nickel, dime, and quarter coins.

 The circuit ports are depicted in fi gure 5.10a . The inputs nickel_in , dime_in , and
 quarter_in are generated by the coin collector, informing the type of coin that was
deposited by the customer. The inputs nickel_out and dime_out are generated by the
coin dispenser mechanism, informing the type of coin that was returned to the cus-
tomer. The last nonoperational input is candy_out , produced by the candy dispenser
mechanism, informing that a candy was delivered to the customer. The outputs
 disp_nickel and disp_dime tell the coin dispenser mechanism that a nickel or a dime
must be returned to the customer, while the output disp_candy tells the candy bar
dispenser mechanism that a candy bar must be delivered to the customer.

 A corresponding Moore machine is presented in fi gure 5.10b . To simplify the nota-
tion, numbers were used instead of names (see other examples of equivalent state
diagram representations in section 1.4). The state names correspond to the accumu-
lated amount (credit). The transition conditions refer to the last coin entered, with
negative values indicating change returned to the customer. In the coin-return opera-
tions it was opted to deliver the largest coins possible. After the machine reaches the
state 40 (thick circle), the only way to return to the initial state is by receiving a

Regular (Category 1) State Machines 91

 candy_out = ‘ 1 ’ command from the candy-delivering mechanism confi rming that a
candy bar was dispensed or a reset pulse.

 Note that the machine of fi gure 5.10b is subject to state bypass (section 4.2.4) if
the inputs last longer than one clock period (which is generally the case in this kind
of application), so wait states (or a fl ag or one-shot conversion) must be added (exercise
5.11).

 Because glitches are defi nitely not acceptable in this application, the optional
output register should be used here. In regard to the inputs, we can assume that
they are produced by other circuits that process the actual inputs and hence
operate with the same clock as our state machine, dispensing with the use of debounc-
ers and/or synchronizers (although they might be needed at the inputs of preceding
circuits).

 If we assume that all control inputs to this machine last exactly one clock period
(due to one-shot circuits, for example), so state bypass cannot occur and additional
states are not needed, the number of DFFs required to build it (with M FSM = 13 states)
is N FSM = 4 if sequential or Gray encoding is used, 7 for Johnson, or 13 for one-hot,
plus N output = 3 for the output register.

 5.4.7 Datapath Control for an Accumulator
 Before we examine this example, a review of section 3.13 is suggested.

 In this example we assume that the datapath of fi gure 3.22a must operate as an
add-and-accumulate circuit (ACC), accumulating in register A four consecutive values

 Figure 5.10
 Controller for a vending machine that sells candy bars for $0.40, accepting nickels, dimes, and

quarters. (a) Circuit ports. (b) Corresponding Moore machine (state-bypass prevention not

included).

92 Chapter 5

of inpB . The data-valid bit (dv), when asserted (during just one clock period), will again
be responsible for starting the computations, after which the resulting value must
remain displayed at ALUout until another pulse occurs in dv . In summary, the opera-
tions are: 0 + B → A, A + B → A, A + B → A, and A + B → A.

 Recall that in a datapath-based design the FSM is not responsible for implementing
the whole computation but just the control unit (shown on the left in fi gure 3.22a),
which controls the datapath. In other words, the FSM must produce the signals selA
(selects the data source for register A), wrA and wrB (enable writing into registers A
and B), and ALUop (produces the ALU opcode, defi ning its operations, according to
the table in fi gure 3.22b).

 An illustrative timing diagram (similar to what was done in fi gure 3.22c) for an
FSM that controls this datapath such that the desired accumulator results is presented
in fi gure 5.11a . Note that the computations take fi ve steps (called start , acc1 , acc2 ,
 acc3 , and acc4), after which the control unit (FSM) returns to the idle state (so the
machine has six states). The corresponding state transition diagram, which is a direct
translation of the timing diagram (compare the values in the timing diagram against
those in the state transition diagram), is exhibited in fi gure 5.11b . Observe that this
control unit is indeed a category 1 machine.

 Because this machine has M FSM = 6 states, and the optional output register is gener-
ally not needed in control units, the number of fl ip-fl ops required to implement it
(see section 5.3) is N FSM = 3 if sequential, Gray, or Johnson encoding is used or 6 for
one-hot.

 Figure 5.11
 (a) Illustrative timing diagram for the datapath of fi gure 3.22a operating as an accumulator. (b)

Corresponding Moore machine.

Regular (Category 1) State Machines 93

 5.4.8 Datapath Control for a Greatest Common Divisor Calculator
 Before we examine this example, a review of section 3.13 is suggested. Particular
attention should be paid to comment number 4 at the end of that section, which is
helpful here.

 This section shows another example of a datapath-based circuit. The datapath must
compute the GCD (greatest common divisor) between two integers. The corresponding
algorithm is shown in fi gure 5.12 ; the largest value is substituted with the difference
between it and the other value until the values become equal, which is then declared
to be the GCD. A corresponding fl owchart is also included in fi gure 5.12 . As in the
previous example, a dv bit, when asserted (during one clock period), must start the
computations.

 The datapath to be used in this example is depicted in fi gure 5.13a . The ALU ’ s
opcode table is shown in fi gure 5.13b . The ALU has also an auxiliary output (sign) that
indicates whether its output (ALUout) is zero (“ 00 ”), positive (“ 01 ”), or negative (“ 10 ”),
as listed in fi gure 5.13c .

 As shown, the datapath ’ s control signals are selA and selB (select the data sources
for registers A and B), wrA and wrB (enable writing into registers A and B), and ALUop
(produces the ALU opcode, defi ning its operations, according to the table in fi gure
5.13b). The control unit (FSM) is responsible for generating all control signals.

 An illustrative timing diagram for an FSM that controls this datapath such that the
desired computations occur is presented in fi gure 5.13d . Dashed lines indicate “ don ’ t
care ” values. Because inpA = 9 and inpB = 15 were adopted, the following computations
are expected: Iteration 1, 9 → A, 15 → B; Iteration 2, B > A, then 15 − 9 = 6 → B; Itera-
tion 3, A > B, then 9 − 6 = 3 → A; Iteration 4, B > A, so 6 − 3 = 3 → B. Because A = B,
GCD = A = 3.

 Observe in fi gure 5.13d that the time slots are identifi ed as idle (waiting for a dv
bit), load (inpA and inpB are stored in A and B), writeA (ALUout is stored in A), and

 Figure 5.12
 GCD algorithm and fl owchart.

94 Chapter 5

 Figure 5.13
 (a) Datapath and control unit for a GCD calculator. (b) ALU ’ s opcode table. (c) ALU ’ s sign table.

(d) Illustrative timing diagram, for inpA = 9 and inpB = 15. (e) Corresponding state machine.

Regular (Category 1) State Machines 95

 writeB (ALUout is stored in B). Observe also the presence of a wait time slot after every
data storage, which is needed for the data to be effectively ready for comparison before
an actual comparison occurs (recall comment 4 of section 3.13).

 A corresponding state transition diagram is presented in fi gure 5.13e , which is a
direct translation of the timing diagram (compare the values in the plots against those
in the state transition diagram). Note that after each write-enabling state (load , writeA ,
and writeB) the machine goes unconditionally to the wait state. In the idle state, wrA =
 wrB = ‘ 0 ’ , so nothing can be written into the registers, and because ALUop = 0, the output
is ALUout = A, so the computed GCD value is kept unchanged until dv is asserted again.

 VHDL and SystemVerilog implementations for this control unit are presented in
sections 6.8 and 7.7, respectively.

 5.4.9 Generic Sequence Detector
 This is another interesting example from a conceptual point of view. Say that we want
to design a signature detector that searches for the string “ abc ” in a sequential data
stream, examining one character at a time (a character here represents a bit vector
with any number of bits). So this is exactly the same problem presented in the very
fi rst state transition diagram of the book (fi gure 1.3, repeated in fi gure 5.14a) . In this
example it was assumed that a ≠ b ≠ c , so this machine works well. But let us consider
now a completely generic situation, in which a , b , and c are programmable , so we can
no longer assume that they are all different. Will this machine still work?

 Figure 5.14
 Generic string detection. (a) Nongeneric case (requires a ≠ b ≠ c). (b) Completely generic imple-

mentation due to the inclusion of priorities in the transition conditions. (c) Example for the case

of a = b = c .

96 Chapter 5

 To answer this question, let us assume that a = b , so b can be replaced with a in
 fi gure 5.14a . Consequently, state B (for example) has the following transition condi-
tions: a in the BB transition; a also in the BC transition; and ≠ a & ≠ b = ≠ a in the BA
transition. This shows that state B is now overspecifi ed because both BB and BC transi-
tions are governed by the same condition (a). Therefore, this machine is not fi ne for
generic values of a , b , and c .

 The new question then is “ How do we fi x overspecifi cations? ” We do it in the way
explained in section 1.5, that is, with the establishment of priorities . This is done in
 fi gure 5.14b . For state B, the BC transition must have priority over the BB transition,
so the transition condition in the former remains just b , while that in the latter
becomes a & ≠ b . Likewise, for state C, the CD transition must have priority over the
CB transition; thus, the transition condition in the former remains c , whereas that in
the latter becomes a & ≠ c .

 As an example, fi gure 5.14c shows the extreme case in which a = b = c . Then ≠ a &
 ≠ b = ≠ a , ≠ a & ≠ c = ≠ a , a & ≠ b = null (so the BB transition disappears), and a & ≠ c =
null (the CB transition also disappears).

 The only restriction of this generic string detector is that it detects only nonover-
lapping strings.

 5.4.10 Transparent Circuits
 We close this chapter with the description of a special (although uncommon) type of
circuit for FSMs, which consists of sequential circuits that are required to be “ transpar-
ent ” (i.e., the output must “ see ” the input; in other words, if the input changes, so
should the output). If implemented using an FSM, the circuit must provide outputs
that are capable of changing when the input changes, even if the machine remains
in the same state.

 As an example, consider the case in fi gure 5.15a , with inputs a and b and output
 y . The output must be y = a during one clock period, y = a ⋅ b during the next period,
and fi nally y = b during the third clock cycle, with this sequence repeated indefi nitely.
Corresponding Moore and Mealy diagrams are included in fi gures 5.15b,c . Note that
because the machine must go to the next state at every clock cycle, its transitions are
unconditional.

 Because in this case the output depends solely on the machine ’ s state, a Moore
machine seems to be the natural choice. However, because the output must change
when the input changes, a Mealy machine, being asynchronous, would be recom-
mended. In fact, both are fi ne.

 In the Moore case the transparency problem is circumvented by associating the
machine with switches such as the multiplexer in fi gure 5.15d , in which case the
machine plays just the role of mux selector (in this example, the resulting machine
is clearly just a 0-to-2 counter), so even though the machine is not transparent, the

Regular (Category 1) State Machines 97

overall circuit is (this is typically what a VHDL/SystemVerilog compiler would do). In
the Mealy case the implementation is straightforward, but the output will be one clock
cycle ahead of the desired sequence (compare fi gures 5.15b and 5.15c).

 5.4.11 LCD, I 2 C, and SPI Interfaces
 Three special additional design examples are presented in chapter 14, consisting of
circuits for interfacing with alphanumeric LCD displays and for implementing I 2 C or
SPI serial interfaces. Depending on the application, any of the three FSM categories
might be needed in these circuits; for instance, in the LCD driver example of section
14.1, a category 1 FSM is employed, whereas in the I 2 C and SPI serial interfaces of
sections 14.2 and 14.3, categories 2 and 3 are used.

 5.5 Exercises

 Exercise 5.1: Machine Category and Number of Flip-Flops
 a) Why are the state machines in fi gures 5.3, 5.9c, and 5.13e (among others) said to
be of category 1?
 b) How many DFFs are needed to implement each of these FSMs using (i) sequential
encoding, (ii) Gray encoding, or (iii) one-hot encoding?

 Exercise 5.2: Metastability and Synchronizer
 a) Solve exercise 2.2 if not done yet.
 b) Consider now the garage door controller of fi gure 5.9 . (i) Which inputs are asyn-
chronous? (ii) If no debouncing circuits (which are synchronous) are adopted for the
asynchronous inputs, are synchronizers indispensable in this application?

 Exercise 5.3: Need for Reset
 a) Solve exercise 3.10 if not done yet.
 b) Solve exercise 3.11 if not done yet.

 Figure 5.15
 A “ transparent ” circuit. (a) Circuit ports. (b) Moore and (c) Mealy state transition diagrams.

(d) Typical implementation based on the Moore model.

98 Chapter 5

 Exercise 5.4: Truly Complementary Transition Conditions
 In section 1.5 the importance of having the state transition diagram neither under- nor
overspecifi ed was discussed. What happens if, in the garage door controller of fi gure
5.9c, the condition sen1 = ‘ 0 ’ is removed from the opening1 - opening2 transition, or the
condition sen2 = ‘ 0 ’ is removed from the closing1 - closing2 transition?

 Exercise 5.5: One-Shot Circuits Analysis
 a) It is said in section 5.4.3 that the solution in fi gure 5.7d is inferior to that in fi gure
5.7c . Why? (Suggestion: fi ll in the last two plots of fi gure 5.16 and you will see the
answer.)
 b) Is reset indispensable in these two solutions?
 c) In order to answer the question posed at the end of section 5.4.3, solve exercise 3.3
if not done yet.

 Exercise 5.6: Two-Signal-Triggered One-Shot Circuit
 Figure 5.17 shows an illustrative timing diagram for a one-shot circuit that is not trig-
gered by a single signal but rather by a pair of signals. The triggering condition is the
following: the one-shot pulse (in y) must be generated if the control signal x lasts at
least as long as the dv pulse (this is obviously checked only at positive clock transi-
tions). Note in the fi gure that only the fi rst pulse of x fulfi lls this requirement, so the
one-clock-period pulse in y has to be produced only in that case. Draw the state transi-
tion diagram for a state machine capable of implementing this circuit.

 Exercise 5.7: Arbiter
 Arbiters are used to manage access to shared resources. An example is depicted
in fi gure 5.18 , which shows three peripherals (P1 to P3) that use a common bus

 Figure 5.16

 Figure 5.17

Regular (Category 1) State Machines 99

to access common resources. Obviously, only one of them can use the bus at a
time; for example, if P1 wants to use the bus, it issues a request (r 1 = ‘ 1 ’) to the
arbiter, which grants (g 1 = ‘ 1 ’) access only if the bus is idle at that moment. If
multiple requests are received by the arbiter, access is granted based on preestablished
priorities. Assuming that the priorities are P1 > P2 > P3, draw a state transition
diagram for a machine capable of implementing this arbiter. The machine ’ s input
and output are the vectors r = r 1 r 2 r 3 and g = g 1 g 2 g 3 , respectively (besides clock and
reset, of course).

 Exercise 5.8: Manchester Encoder
 An IEEE Manchester encoder produces a low-to-high transition when the input is ‘ 1 ’
or a high-to-low transition when it is ‘ 0 ’ , as illustrated in fi gure 5.19 for the sequence
 “ 01001 ” . Note that each input value lasts two clock periods. Observe also the presence
of a dv bit, which defi nes the extent of the vector to be encoded (dashed lines in y
indicate “ don ’ t care ” values). To be more realistic, dv is produced at the same time
that the fi rst valid bit is presented; additionally, a small propagation delay is included
between clock transitions and corresponding responses. Assume that the machine too
must operate at the positive clock edge.

 a) Draw a state transition diagram for a Moore machine capable of implementing this
encoder.
 b) Redraw the illustrative timing diagram of fi gure 5.19 for your Moore machine,
including in it a plot for pr_state . Does the Moore circuit behave exactly as in fi gure
5.19, or is y one clock cycle delayed?
 c) Redo the design, this time employing a Mealy machine.

 Figure 5.18

 Figure 5.19

100 Chapter 5

 d) Repeat part b now for your Mealy solution.
 e) Say that we want the output to be completely clean. Are any of the solutions above
guaranteed to be glitch-free? If not, how can glitches be removed? What happens then
with the time response?

 Exercise 5.9: Differential Manchester Encoder
 Figure 5.20 illustrates the operation of a differential Manchester encoder for the
sequence “ 01001 ” . Note that the shape of the output pulse remains unchanged when
the input is ‘ 0 ’ but gets inverted when it is ‘ 1 ’ . For example, if the last pulse was a
 ‘ 1 ’ -to- ‘ 0 ’ pulse, the next pulse must be ‘ 1 ’ -to- ‘ 0 ’ if the input is ‘ 0 ’ or ‘ 0 ’ -to- ‘ 1 ’ if it is
 ‘ 1 ’ . Observe the presence of a dv bit, which defi nes the extent of the vector to be
encoded (dashed lines in y indicate “ don ’ t care ” values). To be more realistic, dv is
produced at the same time that the fi rst valid bit is presented; additionally, a small
propagation delay has been included between the clock transitions and the corre-
sponding responses. Assume that the machine too must operate at the positive clock
edge.

 a) Draw a state transition diagram for a Moore machine capable of implementing this
encoder.
 b) Redraw the illustrative timing diagram of fi gure 5.20 for your solution, including
in it a plot for pr_state . Does the Moore circuit behave exactly as in fi gure 5.20, or is
 y one clock cycle delayed?

 Exercise 5.10: Time-Ordered “ 111 ” Detector
 Draw the state transition diagram for an FSM that detects the sequence abc = “ 111 ”
under the constraint that it must be time ordered; that is, a = ‘ 1 ’ must occur (and
hold), then b = ‘ 1 ’ must also occur (and hold), and fi nally, c = ‘ 1 ’ must happen. The
circuit ports are shown in fi gure 5.21a . The circuit operation is illustrated in fi gure
5.21b , where x = ‘ 1 ’ occurs when abc = “ 111 ” , but in a time-ordered fashion.

 Exercise 5.11: Vending Machine
 It was seen that the vending machine controller of fi gure 5.10b must be improved
to avoid state bypass. Present a solution for this problem. Is it better to include wait

 Figure 5.20

Regular (Category 1) State Machines 101

states or a fl ag or to convert the inputs into one-shot signals with one-clock-period
duration?

 Exercise 5.12: Time Behavior of a String Detector
 Consider the Moore-type state machine of fi gure 5.14a , which detects the sequence
 “ abc ” for the case of a ≠ b ≠ c , where x and y represent the input and output,
respectively.

 a) Complete the timing diagram of fi gure 5.22 for the given values of x . Note that a
little propagation delay was included between the clock transitions and the respective
changes in the present state; do the same for y .
 b) Does the output go up immediately when the sequence “ abc ” occurs or only at the
next (positive) clock edge? Is this result as you expected? (Recall that Moore machines
are fully synchronous.)

 Exercise 5.13: Generic Overlapping String Detector
 We saw in section 5.4.9 a generic approach for the implementation of nonoverlapping
string detectors. In that case, if the sequence to be detected were “ aba ” , for example,
the response to the serial bit stream “ abababab … ” would be “ 00100010001 … ” , whereas
here, because overlaps must be allowed, it should be “ 0010101 … ” . Can you fi nd a
generic solution (with or without a state machine) for this case?

 Exercise 5.14: Keypad Encoder
 Figure 5.23a shows a 12-key keypad for which we need to design an encoder (and
possibly also a debouncer — debouncers are discussed in chapter 8). The actual push-
button connections can be seen in fi gure 5.23b , where r (3:0) and c (2:0) represent the
keypad ’ s rows and columns, respectively. Note that because of the pull-up resistors,

 Figure 5.21

 Figure 5.22

102 Chapter 5

the rows ’ voltages are all high when no switch is pressed. The keypad encoder must
connect the bottom of one column at a time to ground (‘ 0 ’), then read the resulting
row values, converting them into the respective codeword, as listed in fi gure 5.23c
(n stands for “ none ”); for example, if c = “ 011 ” , which means that the leftmost column
is being inspected, and the reading is r = “ 1011 ” , then we know that pushbutton 4 is
pressed. Present a solution for this encoder. (A possible solution for the debouncer is
treated in exercise 8.11.)

 Exercise 5.15: Datapath Controller for a Largest-Value Detector
 Say that you are given the datapath of fi gure 5.13a , with inpB monitoring a serial data
stream, of which the largest value must be determined (placed at the ALU output,
 ALUout). The monitoring should start when a dv bit is asserted, ending when dv returns
to zero.

 a) Develop a state transition diagram (as in fi gure 5.13e) for an FSM capable of imple-
menting the corresponding control unit. Include in it “ nop ” (no operation) states if
necessary to have the number of clock cycles be the same in all iterations.
 b) Present an illustrative timing diagram for your machine (as in fi gure 5.13d), assum-
ing that the values presented to the circuit (while dv = ‘ 1 ’) are 5 → 8 → 4 → 0. (If you
prefer, do part b before part a.)

 Exercise 5.16: Datapath Controller for a Square Root Calculator
 To calculate z = (x 2 + y 2) 1/2 , where x , y , and z are unsigned integers, the expression z =
max(a − a /8 + b /2, a) can be used, where a = max(x , y) and b = min(x , y). Recall that
to divide an integer by 8 or by 2 all that is needed is to shift it to the right three posi-
tions or one position, respectively. Make the adjustments that you fi nd necessary in
the datapath of fi gure 5.13a (for example, include a shift-right option in one of the
existing registers or in a new register at the ALU output), then devise a state machine
that computes the square root above using that datapath.

 Figure 5.23

Regular (Category 1) State Machines 103

 Exercise 5.17: Flag Monitor
 Develop an FSM for a circuit that monitors a fl ag such that, if the fl ag remains constant
within a given time window, the output copies the measured (constant) fl ag value.
This is illustrated in fi gure 5.24 ; if fl ag_in has no transitions at all while window is high,
then fl ag_out gets the value of fl ag_in ; otherwise, it keeps the same value that it had
when the time window started.

 Figure 5.24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

