
 6   VHDL Design of Regular (Category 1) State Machines 

 6.1   Introduction 

 This chapter presents several VHDL designs of category 1 state machines. It starts by 
presenting two VHDL templates, for Moore- and Mealy-based implementations, which 
are used subsequently to develop a series of designs related to the examples introduced 
in chapter 5. 

 The codes are always complete (not only partial sketches) and are accompanied by 
comments and simulation results, illustrating the design ’ s main features. All circuits 
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations 
were performed with Quartus II or ModelSim (from Mentor Graphics). The default 
encoding scheme for the states of the FSMs was regular sequential encoding (see 
encoding options in section 3.7; see ways of selecting the encoding scheme at the end 
of section 6.3). 

 The same designs will be presented in chapter 7 using SystemVerilog, so the reader 
can make a direct comparison between the codes. 

  Note:  See suggestions of VHDL books in the bibliography. 

 6.2   General Structure of VHDL Code 

 A typical structure of VHDL code for synthesis, with all elements that are needed in 
this and in coming chapters, is depicted in   fi gure 6.1 . It is composed of three funda-
mental sections, briefl y described below.    

 Library/Package Declarations 
 As the name says, it contains the libraries and corresponding packages needed in the 
design. The most common package is  std_logic_1164 , from the IEEE library, which 
defi nes the types  std_logic  (for single bit) and  std_logic_vector  (for multiple bits), which 
are the industry standard. 
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 Entity 
 The entity is divided into two main parts, called  generic  and  port . 

  Generic:    This portion is optional. It is used for the declaration of global parameters, 
which can be easily modifi ed to fulfi ll different system specifi cations or, more impor-
tantly, can be overridden during instantiations (using the  component  construct) into 
other designs. 
  Port:    This part of the code is mandatory for synthesis. It is just a list with specifi -
cations of all circuit ports (I/Os), including their name, mode ( in ,  out ,  inout , or  buffer ), 
and type (plus range). 

 Architecture 
 The architecture too is divided into two parts, called  declarative part  and  statements part . 

  Declarative part:    This section precedes the keyword  begin  and is optional. It is used 
for all sorts of local declarations, including  type ,  signal , and  component . It also allows 
the construction of  function  and  procedure . These declarations and functions/
procedures can also be placed outside the main code, in a  package . 
  Statements part:    This portion, which starts at the keyword  begin , constitutes the 
code proper. As shown in   fi gure 6.1 , its main elements (in no particular order) are 
the following: basic expressions using operators (for simple combinational circuits); 
expressions using concurrent statements ( when ,  select ,  generate ), generally for simple 

 Figure 6.1 
 Typical VHDL code structure for synthesis. 
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to midcomplexity combinational circuits; sequential code using  process , which is 
constructed using sequential statements ( if ,  case ,  loop ,  wait ), for sequential as well 
as (complex) combinational circuits;  function / procedure  calls; and, fi nally,  compo-
nent  (that is, other design) instantiations, resulting in structural designs. 

 6.3   VHDL Template for Regular (Category 1) Moore Machines 

 The template is based on   fi gure 6.2  (derived from fi gure 5.2), which shows three pro-
cesses: 1) for the FSM state register; 2) for the FSM combinational logic; and 3) for the 
optional output register. Note the asterisk on one of the input connections; as we 
know, if that connection exists it is a Mealy machine, else it is a Moore machine.    

 There obviously are other ways of breaking the code instead of using the three 
processes indicated in   fi gure 6.2 . For example, the combinational logic section, being 
not sequential, could be implemented without a process (using purely concurrent 
code). At the other extreme the combinational logic section could be implement ed 
with two processes, one with the logic for  output , the other with the logic for  nx_
state . 

 The VHDL template for the design of category 1 Moore machines, based on   fi gures 
6.1 and 6.2 , is presented below. Observe the following: 

 1)   To improve readability, the three fundamental code sections (library/package dec-
larations, entity, and architecture) are separated by dashed lines (lines 1, 4, 14, 76). 
 2)   The library/package declarations (lines 2 – 3) show the package  std_logic_1164 , 
needed because the types used in the ports of all designs will be  std_logic  and/or  std_
logic_vector  (industry standard). 
 3)   The entity, called  circuit , is in lines 5 – 13. As seen in   fi gure 6.1 , it usually contains 
two parts:  generic  (optional) and  port  (mandatory for synthesis). The former is 
employed for the declaration of generic parameters (if they exist), as illustrated in lines 
6 – 8. The latter is a list of all circuit ports, with respective specifi cations, as illustrated 

 Figure 6.2 
 State machine architecture depicting how the VHDL code was broken (three processes). 
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in lines 9 – 12. Note that the type used for all ports (lines 10 – 12) is indeed  std_logic  or 
 std_logic_vector . 
 4)   The architecture, called  moore_fsm , is in lines 15 – 75. It too is divided into two parts: 
declarative part (optional) and statements part (code proper, so mandatory). 
 5)   The declarative part of the architecture is in lines 16 – 19. In lines 16 – 17 a special 
enumerated type, called  state , is created, and then the signals  pr_state  and  nx_state  are 
declared using that type. In lines 18 – 19 an optional attribute called  enum_encoding  is 
shown, which defi nes the type of encoding desired for the machine ’ s states (e.g., 
 “ sequential ” ,  “ one-hot ” ). Another related attribute is  fsm_encoding . See a description 
for both attributes after the template below. The encoding scheme can also be chosen 
using the compiler ’ s setup, in which case lines 18 – 19 can be removed. 
 6)   The statements part (code proper) of the architecture is in lines 20 – 75 (from  begin  
on). In this template it is composed of three  process  blocks, described below. 
 7)   The fi rst process (lines 23 – 30) implements the state register (process 1 of   fi gure 6.2 ). 
Because all of the machine ’ s DFFs are in this section, clock and reset are only con-
nected to this block (plus to the optional output register, of course, but that is not 
part of the FSM proper). Note that the code for this process is essentially standard, 
simply copying  nx_state  to  pr_state  at every positive clock transition (thus inferring 
the DFFs that store the machine ’ s state). 
 8)   The second process (lines 33 – 61) implements the entire combinational logic section 
of the FSM (process 2 of   fi gure 6.2 ). This part must contain all states (A, B, C, . . .), 
and for each state two things must be declared: the output values/expressions and the 
next state. Observe, for example, in lines 36 – 46, relative to state A, the output declara-
tions in lines 37 – 39 and the next-state declarations in lines 40 – 46. A very important 
point to note here is that there is no  if  statement associated with the outputs because 
in a Moore machine the outputs depend solely on the state in which the machine is, 
so for a given state each output value/expression is unique. 
 9)   The third and fi nal process (lines 64 – 73) implements the optional output register 
(process 3 of   fi gure 6.2 ). Note that it simply copies each original output to a new 
output at every positive clock edge (it could also be at the negative edge), thus infer-
ring the extra register. If this register is used, then the names of the new outputs must 
obviously be the names used in the corresponding port declarations (line 12). If the 
initial output values do not matter, reset is not required in this register. 
 10)   To conclude, observe the completeness of the code and the correct use of registers 
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below. 

 a)   Regarding the use of registers: The circuit is not overregistered. This can be 
observed in the  elsif rising_edge(clk)  statement of line 27 (responsible for the infer-
ence of fl ip-fl ops), which is closed in line 29, guaranteeing that only the machine 
state (line 28) gets registered. The circuit outputs are in the next process, which is 
purely combinational. 
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 b)   Regarding the outputs: The list of outputs ( output1 ,  output2 , . . .) is the same in 
all states (see lines 37 – 39, 48 – 50, . . .), and the output values (or expressions) are 
always declared. 
 c)   Regarding the next state: Again, the coverage is complete because all states (A, B, 
C, . . .) are included, and in each state the declarations are fi nalized with an  else  
statement (lines 44, 55, . . .), guaranteeing that no condition is left unchecked. 

  Note 1:    See also the comments in sections 6.4, which show some template variations. 

  Note 2:    The VHDL 2008 review of the VHDL standard added the keyword  all  as a replace-
ment for a process ’  sensitivity list, so  process (all)  is now valid. It also added boolean 
tests for  std_logic  signals and variables, so  if x= ‘ 1 ’  then . . .  can be replaced with  if x 
then. . . .  Both are supported by the current version (12.1) of Altera ’ s Quartus II compiler 
but not yet by the current version (14.2) of Xilinx ’ s ISE suite (XST compiler). 

  Note 3:    Another implementation approach, for simple FSMs, will be seen in chapter 15.    

  1    -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6    generic (   
  7    param1: std_logic_vector(...) :=  < value > ;  
  8    param2: std_logic_vector(...) :=  < value > );  
  9    port (  
  10    clk, rst: in std_logic;  
  11    input1, input2, ...: in std_logic_vector(...);  
  12    output1, output2, ...: out std_logic_vector(...);   
  13    end entity;  
  14    -------------------------------------------------------------  
  15    architecture moore_fsm of circuit is   
  16    type state is (A, B, C, ...);   
  17    signal pr_state, nx_state: state;  
  18    attribute enum_encoding: string; --optional, see comments   
  19    attribute enum_encoding of state: type is "sequential";  
  20    begin  
  21  
  22    --FSM state register:  
  23    process (clk, rst)  
  24    begin  
  25    if rst='1' then  --see Note 2 above on boolean tests  
  26    pr_state  < = A;      
  27    elsif rising_edge(clk) then  
  28    pr_state  < = nx_state;  
  29    end if;  
  30    end process;  
  31  
  32    --FSM combinational logic:  
  33    process (all) --see Note 2 above on "all" keyword  
  34    begin        
  35    case pr_state is  
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  36    when A = >   
  37    output1  < =  < value > ;  
  38    output2  < =  < value > ;  
  39    ...  
  40    if  < condition >  then   
  41    nx_state  < = B;  
  42    elsif  < condition >  then  
  43    nx_state  < = ...;  
  44    else  
  45    nx_state  < = A;  
  46    end if;  
  47    when B = >   
  48    output1  < =  < value > ;  
  49    output2  < =  < value > ;  
  50    ...  
  51    if  < condition >  then   
  52    nx_state  < = C;  
  53    elsif  < condition >  then  
  54    nx_state  < = ...;  
  55    else  
  56    nx_state  < = B;  
  57    end if;  
  58    when C = >   
  59    ...  
  60    end case;  
  61    end process;  
  62  
  63    --Optional output register:  
  64    process (clk, rst)  
  65    begin  
  66    if rst='1' then  --rst generally optional here  
  67    new_output1  < = ...;  
  68    ...  
  69    elsif rising_edge(clk) then  
  70    new_output1  < = output1;  
  71    ...  
  72    end if;  
  73    end process;  
  74  
  75    end architecture;  
  76    -------------------------------------------------------------  

   Final Comments 

 1)   On the need for a reset signal: Note in the template above that the sequential 
portion of the FSM (process of lines 23 – 30) has a reset signal. As seen in sections 3.8 
and 3.9, that is the usual situation. However, as also seen in those sections, if the 
circuit is implemented in an FPGA (so the fl ip-fl ops are automatically reset on power-up) 
and the codeword assigned to the intended initial (reset) state is the all-zero codeword, 
then reset will occur automatically. 
 2)   On the  enum_encoding  and  fsm_encoding  attributes: As mentioned earlier, these 
attributes can be used to select the desired encoding scheme ( “ sequential ” ,  “ one-hot ” , 
 “ 001 011 010 ” , and others — see options in section 3.7), overriding the compiler ’ s 
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setup. It is important to mention, however, that support for these attributes varies 
among synthesis compilers. For example, Altera ’ s Quartus II has full support for 
 enum_encoding , so both examples below are fi ne (where  “ sequential ”  can also be  “ one-
hot ” ,  “ gray ” , and so on):  

  attribute enum_encoding: string;  

  attribute enum_encoding of state: type is "sequential";  

  attribute enum_encoding: string;  

  attribute enum_encoding of state: type is "001 100 101"; --user defined  

   Xilinx ’ s XST (from the ISE suite), on the other hand, only supports  enum_encoding  
for user-defi ned encoding; for the others ( “ sequential ” ,  “ one-hot ” , etc.),  fsm_encoding  
can be used. Two valid examples are shown below:  

  attribute enum_encoding: string;  

  attribute enum_encoding of state: type is "001 100 101";  

  attribute fsm_encoding: string;  

  attribute fsm_encoding of pr_state: signal is "sequential";  

   6.4   Template Variations 

 The template of section 6.3 can be modifi ed in several ways with little or no effect on 
the fi nal result. Some options are described below. These modifi cations are extensible 
to the Mealy template treated in the next section. 

 6.4.1   Combinational Logic Separated into Two Processes 
 A variation sometimes helpful from a didactic point of view is to separate the FSM 
combinational logic process into two processes: one for the output, another for the 
next state. Below, the process for the output logic is in lines 33 – 47, and that for the 
next state logic is in lines 50 – 69.  

  32    --FSM combinational logic for output:  
  33    process (all)  
  34    begin    
  35    case pr_state is  
  36    when A = >   
  37    output1  < =  < value > ;  
  38    output2  < =  < value > ;  
  39    ...  
  40    when B = >   
  41    output1  < =  < value > ;  
  42    output2  < =  < value > ;  
  43    ...  
  44    when C = >   
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  45    ...  
  46    end case;  
  47    end process;  
  48  
  49    --FSM combinational logic for next state:  
  50    process (all)  
  51    begin    
  52    case pr_state is  
  53    when A = >   
  54    if  < condition >  then   
  55    nx_state  < = B;  
  56    elsif  < condition >  then  
  57    nx_state  < = ...;  
  58    else  
  59    nx_state  < = A;  
  60    end if;  
  61    when B = >   
  62    if  < condition >  then   
  63    nx_state  < = C;  
  64    ...  
  65    end if;  
  66    when C = >   
  67    ...  
  68    end case;  
  69    end process;  

   6.4.2   State Register Plus Output Register in a Single Process 
 A variation in the other direction (reducing the number of processes from three to 
two instead of increasing it to four) consists of joining the process for the state register 
with that for the output register. This is not recommended for three reasons. First, in 
most projects the optional output register is not needed. Second, having the output 
register in a separate process helps remind the designer that the need or not for such 
a register is an important case-by-case decision. Third, one might want to have the 
output register operating at the other (negative) clock edge, which is better emphasized 
by using separate processes. 

 6.4.3   Using Default Values 
 When the same signal or variable value appears several times inside the  same  process, 
a default value can be entered at the beginning of the process. An example is shown 
below for the process of the combinational logic section, with default values for the 
outputs included in lines 36 – 38. In lines 40 – 45 only the values that disagree with 
these must then be typed in. An example in which default values are used is seen in 
section 12.4.  

  32    --FSM combinational logic:  
  33    process (all)  
  34    begin   
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  35    --Default values:  
  36    output1  < =  < value > ;  
  37    output2  < =  < value > ;  
  38    ...  
  39    --Code:  
  40    case pr_state is  
  41    when A = > ;  
  42    ...  
  43    when B = >   
  44    ...  
  45    end case;  
  46    end process;  

   6.4.4   A Dangerous Template 
 A tempting template is shown next. Note that the entire FSM is in a single process 
(lines 17 – 43). Its essential point is that the  elsif rising_edge(clk)  statement encloses 
the whole circuit (it opens in line 21 and only closes in line 42), thus registering it 
completely (that is, not only the state is stored in fl ip-fl ops — this has to be done 
anyway — but also all the outputs). 

 This template has several  apparent  advantages. One is that a shorter code results 
(for instance, we can replace  pr_state  and  nx_state  with a single name —  fsm_state , for 
example; also, only one process is needed). Another apparent advantage is that the 
code will work (no latches inferred) when the list of outputs is not exactly the same 
in all states. Such features, however, might hide serious problems. 

 One of the problems is precisely the fact that the outputs are always registered, so 
the resulting circuit is never the FSM alone but the FSM plus the optional output 
register of fi gure 5.2c, which many times is unwanted. 

 Another problem is that, even if the optional output register were needed, we do 
not have the freedom to choose in which of the clock edges to operate it because the 
same edge is used for the FSM and for the output register in this template, reducing 
the design fl exibility. 

 A third problem is the fact that, because the list of outputs does not need to be the 
same in all states (because they are registered, latches will not be inferred when an 
output value is not specifi ed), the designer is prone to overlook the project 
specifi cations. 

 Finally, it is important to remember that VHDL (and SystemVerilog) is not a 
program but a code, and a shorter code  does not mean  a smaller or better circuit. In 
fact, longer, better-organized codes tend to ease the compiler ’ s work, helping to opti-
mize the fi nal circuit. 

 In summary, the template below is a  particular case  of the general template intro-
duced in section 6.3. The general template gets reduced to this one only when all 
outputs must be registered and the same clock edge must operate both the state register 
and the output register.  
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  1    --Dangerous template (particular case of the general template)  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    ---------------------------------------------------------------  
  5    entity circuit is  
  6    generic (...);  
  7    port (  
  8    clk, rst: in std_logic;  
  9    input, ...: in std_logic_vector(...);  
  10    output, ...: out std_logic_vector(...);   
  11    end entity;  
  12    ---------------------------------------------------------------  
  13    architecture moore_fsm of circuit is   
  14    type state is (A, B, C, ...);   
  15    signal fsm_state: state;  
  16    begin  
  17    process (clk, rst)  
  18    begin  
  19    if rst then  
  20    fsm_state  < = A;  
  21    elsif rising_edge(clk) then  
  22    case fsm_state is  
  23    when A = >   
  24     output  < =  < value > ;  
  25    if  < condition >  then   
  26    fsm_state  < = B;  
  27     elsif  < condition >  then  
  28    fsm_state  < = ...;  
  29     else  
  30    fsm_state  < = A;  
  31     end if;  
  32    when B = >   
  33     output  < =  < value > ;  
  34    if  < condition >  then   
  35    ...  
  36     else  
  37    fsm_state  < = B;  
  38     end if;  
  39    when C = >   
  40    ...  
  41    end case;  
  42    end if;  
  43    end process;  
  44    ---------------------------------------------------------------  

   6.5   VHDL Template for Regular (Category 1) Mealy Machines 

 This template, also based on   fi gures 6.1 and 6.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the process for the com-
binational logic because the output is specifi ed differently now. Recall that in a Mealy 
machine the output depends not only on the FSM ’ s state but also on its input, so  if  
statements are expected for the output in one or more states because the output values 
might not be unique. This is achieved by including the output  within  the conditional 
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statements for  nx_state . For example, observe in lines 20 – 36, relative to state A, that 
the output values are now conditional. Compare these lines against lines 36 – 46 in the 
template of section 6.3. 

 Please review the following comments, which can easily be adapted from the Moore 
case to the Mealy case: 

  — On the Moore template for category 1, in section 6.3, especially comment 10. 
  — On the  enum_encoding  and  fsm_encoding  attributes, also in section 6.3. 
  — On possible code variations, in section 6.4. 

  1    -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity circuit is  
  6    (same as for category 1 Moore, section 6.3)    
  7    end entity;  
  8    -------------------------------------------------------------  
  9    architecture mealy_fsm of circuit IS   
  10    (same as for category 1 Moore, Section 6.3)  
  11    begin  
  12  
  13    --FSM state register:  
  14    (same as for category 1 Moore, section 6.3)  
  15  
  16    --FSM combinational logic:  
  17    process (all) --list proc. inputs if  “ all ”  not supported  
  18    begin    
  19    case pr_state is  
  20    when A = >   
  21    if  < condition >  then   
  22     output1  < =  < value > ;  
  23     output2  < =  < value > ;  
  24     ...  
  25     nx_state  < = B;  
  26    elsif  < condition >  then  
  27     output1  < =  < value > ;  
  28     output2  < =  < value > ;  
  29     ...  
  30     nx_state  < = ...;  
  31    else  
  32     output1  < =  < value > ;  
  33     output2  < =  < value > ;  
  34     ...  
  35     nx_state  < = A;  
  36    end if;  
  37    when B = >   
  38    if  < condition >  then   
  39     output1  < =  < value > ;  
  40     output2  < =  < value > ;  
  41    ...  
  42    nx_state  < = C;  
  43    elsif  < condition >  then  
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  44     output1  < =  < value > ;  
  45     output2  < =  < value > ;  
  46    ...  
  47     nx_state  < = ...;  
  48    else  
  49     output1  < =  < value > ;  
  50     output2  < =  < value > ;  
  51     ...  
  52     nx_state  < = B;  
  53    end if;  
  54    when C = >   
  55    ...  
  56    end case;  
  57    end process;  
  58  
  59    --Optional output register:  
  60    (same as for category 1 Moore, section 6.3)  
  61  
  62    end architecture;  
  63    -------------------------------------------------------------  

   6.6   Design of a Small Counter 

 This section presents a VHDL-based design for the 1-to-5 counter with enable and 
up-down controls introduced in section 5.4.1 (fi gure 5.3). 

 Because counters are inherently synchronous, the Moore approach is the natural 
choice for their implementation, so the VHDL template of section 6.3 is used. Because 
possible glitches during (positive) clock transitions are generally not a problem in 
counters, the optional output register shown in the last process of the template is not 
employed. 

 The entity, called  counter , is in lines 5 – 9. All ports are of type  std_logic  or  std_logic_
vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 88. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 12 – 13), the enumerated type  state  
is created to represent the machine ’ s present and next states. Recall that when neither 
the  enum_encoding  nor the  fsm_encoding  attribute is used, the encoding scheme must 
be selected in the compiler ’ s setup. 

 The fi rst process (lines 17 – 24) in the statements part implements the state register. 
As in the template, this is a standard code with clock and reset present only in this 
process. 

 The second and fi nal process (lines 27 – 86) implements the entire combinational 
logic section. It is just a list of all states, each containing the output value and the 
next state. Note that in each state the output value is unique because in a Moore 
machine the output depends only on the state in which the machine is. 
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 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 21 (responsible for the inference of 
fl ip-fl ops), which is closed in line 23, guaranteeing that only the machine state (line 
22) gets stored. The output ( outp ) is in the next process, which is purely combinational 
(thus not registered). 
 2)   Regarding the outputs: The list of outputs (just  outp  in this example) is exactly the 
same in all states (see lines 31, 42, 53, 64, 75), and the corresponding output values 
are always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 30, 41, 52, 63, 74), and in each state the conditional declarations 
for the next state are always fi nalized with an  else  statement (lines 38, 49, 60, 71, 82), 
guaranteeing that no condition is left unchecked. 

  1    -------------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -------------------------------------------------------------  
  5    entity counter is  
  6    port (  
  7    ena, up, clk, rst: in std_logic;  
  8    outp: out std_logic_vector(2 downto 0));   
  9    end entity;  
  10    -------------------------------------------------------------  
  11    architecture moore_fsm of counter is   
  12    type state is (one, two, three, four, five);   
  13    signal pr_state, nx_state: state;  
  14    begin  
  15  
  16    --FSM state register:  
  17    process (clk, rst)  
  18    begin  
  19    if rst='1' then  
  20    pr_state  < = one;  
  21    elsif rising_edge(clk) then  
  22    pr_state  < = nx_state;  
  23    end if;  
  24    end process;  
  25  
  26    --FSM combinational logic:  
  27    process (all) --list proc. inputs if "all" not supported  
  28    begin    
  29    case pr_state is  
  30    when one = >   
  31    outp  < = "001";  
  32    if ena='1' then  
  33     if up='1' then  
  34    nx_state  < = two;  
  35     else  
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  36    nx_state  < = five;  
  37     end if;  
  38    else  
  39     nx_state  < = one;  
  40    end if;  
  41    when two = >   
  42    outp  < = "010";  
  43    if ena='1' then  
  44     if up='1' then  
  45    nx_state  < = three;  
  46     else  
  47    nx_state  < = one;  
  48     end if;  
  49    else  
  50     nx_state  < = two;  
  51    end if;  
  52    when three = >   
  53    outp  < = "011";  
  54    if ena='1' then  
  55    if up='1' then  
  56    nx_state  < = four;  
  57    else  
  58    nx_state  < = two;  
  59     end if;  
  60    else  
  61    nx_state  < = three;  
  62    end if;  
  63    when four = >   
  64    outp  < = "100";  
  65    if ena='1' then  
  66     if up='1' then  
  67    nx_state  < = five;  
  68     else  
  69    nx_state  < = three;  
  70     end if;  
  71    else  
  72     nx_state  < = four;  
  73    end if;  
  74    when five = >   
  75    outp  < = "101";  
  76    if ena='1' then  
  77     if up='1' then  
  78    nx_state  < = one;  
  79     else  
  80    nx_state  < = four;  
  81     end if;  
  82    else  
  83     nx_state  < = five;  
  84    end if;  
  85    end case;  
  86    end process;  
  87  
  88    end architecture;  
  89    -------------------------------------------------------------  

   Synthesis results using the VHDL code above are presented in   fi gure 6.3 . The cir-
cuit ’ s structure can be seen in the RTL view of   fi gure 6.3a , while the FSM can be seen 
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 Figure 6.3 
 Results from the VHDL code for the 1-to-5 counter with enable and up-down controls of fi gure 

5.3. (a) RTL view. (b) State machine view. (c) Simulation results. 

in   fi gure 6.3b . As expected, the latter coincides with the intended state transition 
diagram (fi gure 5.3). Simulation results are exhibited in   fi gure 6.3c . Note that the 
output changes only at positive clock transitions, counting up when  up  =  ‘ 1 ’ , down 
when  up  =  ‘ 0 ’ , and stopping if  ena  =  ‘ 0 ’ . 

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above 
was three for sequential, Gray, or Johnson encoding and fi ve for one-hot, matching 
the predictions made in section 5.4.1.    

  Note:  As smentioned in section 5.4.1, counters can be designed very easily without 
employing the FSM approach when using VHDL or SystemVerilog. The design above 
was included, nevertheless, because it illustrates well the construction of VHDL code 
for category 1 machines. A similar counter, but without the up-down control, results 
from the code below, where the FSM technique is not employed. Moreover, it is fi ne 
for any number of bits.  

  1    ------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    use ieee.std_logic_arith.all;  
  5    ------------------------------------------------------  
  6    entity counter is  
  7    generic (  
  8    bits: natural := 3;   
  9    xmin: natural := 1;   
  10    xmax: natural := 5);   
  11    port (  
  12    clk, rst, ena: in std_logic;  
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  13    x_out: out std_logic_vector(bits-1 downto 0));  
  14    end entity;  
  15    ------------------------------------------------------  
  16    architecture direct_counter of counter is  
  17    signal x: natural range 0 to xmax;  
  18    begin  
  19    process (clk, rst)  
  20    begin  
  21    if rst='1' then  
  22    x  < = xmin;  
  23    elsif rising_edge(clk) and ena='1' then  
  24    if x < xmax then  
  25    x  < = x + 1;  
  26    else  
  27    x  < = xmin;  
  28    end if;  
  29    end if;  
  30    end process;  
  31    x_out  < = conv_std_logic_vector(x, bits);  
  32    end architecture;  
  33    ------------------------------------------------------  

   6.7   Design of a Garage Door Controller 

 This section presents a VHDL-based design for the garage door controller introduced 
in section 5.4.5. The Moore template of section 6.3 is employed to implement the 
FSM of fi gure 5.9c. 

 The entity, called  garage_door_controller , is in lines 5 – 9. All ports are of type  std_logic  
or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 11 – 94. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 12 – 14), the enumerated type  state  
is created to represent the machine ’ s present and next states. 

 The fi rst process (lines 18 – 25) in the statements part implements the state register. As 
in the template, this is a standard code with clock and reset present only in this process. 

 The second and fi nal process (lines 28 – 92) implements the entire combinational 
logic section. It is just a list of all states, each containing the output value and the 
next state. Note that in each state the output value is unique because in a Moore 
machine the output depends only on the state in which the machine is. 

 Observe the correct use of registers and the completeness of the code as described 
in comment number 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 22 (responsible for the inference of 
fl ip-fl ops), which is closed in line 24, guaranteeing that only the machine state (line 
23) gets stored. The output ( ctr ) is in the next process, which is purely combinational 
(thus not registered). 
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 2)   Regarding the outputs: The list of outputs (just  ctr  in this example) is exactly the 
same in all states (see lines 32, 39, 46,  … ), and the corresponding output value is 
always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 31, 38, 45,  … ), and in each state the conditional declarations for 
the next state are always fi nalized with an  else  statement (lines 35, 42, 51,  … ), guar-
anteeing that no condition is left unchecked.  

  1    --------------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    --------------------------------------------------------  
  5    entity garage_door_controller is  
  6    port (  
  7    remt, sen1, sen2, clk, rst: in std_logic;  
  8    ctr: out std_logic_vector(1 downto 0));   
  9    end entity;  
  10    --------------------------------------------------------  
  11    architecture moore_fsm of garage_door_controller is   
  12    type state is (closed1, closed2, opening1, opening2,   
  13    open1, open2, closing1, closing2);   
  14    signal pr_state, nx_state: state;  
  15    begin  
  16  
  17    --FSM state register:  
  18    process (clk, rst)  
  19    begin  
  20    if rst='1' then  
  21    pr_state  < = closed1;  
  22    elsif rising_edge(clk) then  
  23    pr_state  < = nx_state;  
  24    end if;  
  25    end process;  
  26  
  27    --FSM combinational logic:  
  28    process (all) --or (pr_state, remt, sen1, sen2)  
  29    begin    
  30    case pr_state is  
  31    when closed1 = >   
  32    ctr  < = "0-";  
  33    if remt='0' then  
  34     nx_state  < = closed2;  
  35    else  
  36     nx_state  < = closed1;  
  37    end if;  
  38    when closed2 = >   
  39    ctr  < = "0-";  
  40    if remt='1' then   
  41     nx_state  < = opening1;  
  42    else  
  43     nx_state  < = closed2;  
  44    end if;  
  45    when opening1 = >   
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  46    ctr  < = "10";  
  47    if sen1='1' then   
  48     nx_state  < = open1;  
  49    elsif remt='0' then  
  50    nx_state  < = opening2;  
  51    else  
  52     nx_state  < = opening1;  
  53    end if;  
  54    when opening2 = >   
  55    ctr  < = "10";  
  56    if remt='1' or sen1='1' then   
  57    nx_state  < = open1;  
  58    else  
  59     nx_state  < = opening2;  
  60    end if;  
  61    when open1 = >   
  62    ctr  < = "0-";  
  63    if remt='0' then  
  64     nx_state  < = open2;  
  65    else  
  66    nx_state  < = open1;  
  67    end if;  
  68    when open2 = >   
  69    ctr  < = "0-";  
  70    if remt='1' then  
  71     nx_state  < = closing1;  
  72    else  
  73     nx_state  < = open2;  
  74    end if;  
  75    when closing1 = >   
  76    ctr  < = "11";  
  77    if sen2='1' then   
  78     nx_state  < = closed1;  
  79    elsif remt='0' then  
  80     nx_state  < = closing2;  
  81    else  
  82    nx_state  < = closing1;  
  83    end if;  
  84    when closing2 = >   
  85    ctr  < = "11";  
  86    if remt='1' or sen2='1' then   
  87     nx_state  < = closed1;  
  88    else  
  89     nx_state  < = closing2;  
  90    end if;  
  91    end case;  
  92    end process;  
  93  
  94    end architecture;  
  95    ---------------------------------------------------------  

   The number of fl ip-fl ops inferred by the compiler after synthesizing the code above 
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot, 
matching the predictions made in section 5.4.5. 
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 Figure 6.4 
 Simulation results from the VHDL code for the garage door controller of fi gure 5.9c. 

 Simulation results are depicted in   fi gure 6.4 . The encoding chosen for the states 
was  sequential  (section 3.7). The states are enumerated from 0 to 7 (there are eight 
states), in the order in which they were declared in lines 12 – 13. Be aware, however, 
that some compilers reserve the value zero for the reset state; because the reset (initial) 
state in the present example is  closed1  (see lines 20 – 21), which is the fi rst state in the 
declaration list, that is not a concern here. 

 In this simulation the sequence  closed1 – closed2 – opening1 – opening2 – open1 – open2 –
 closing1 – closed1  (see state names in the lower part of   fi gure 6.4 ) was tested. Note that 
pulses of various widths were used to illustrate the fact that their width has no effect 
beyond the fi rst positive clock edge.    

 6.8   Design of a Datapath Controller for a Greatest Common Divisor Calculator 

 This section presents a VHDL-based design for the control unit introduced in sec-
tion 5.4.8, which controls a datapath to produce a greatest common divisor (GCD) 
calculator. The Moore template of section 6.3 is employed to implement the FSM of 
fi gure 5.13e. 

 The entity, called  control_unit_for_GCD , is in lines 5 – 11. All ports are of the type 
 std_logic  or  std_logic_vector  (industry standard). 

 The architecture, called  moore_fsm , is in lines 13 – 80. As usual, it contains a declara-
tive part (before the keyword  begin ) and a statements part (from  begin  on). 

 In the declarative part of the architecture (lines 14 – 15), the enumerated type  state  
is created to represent the machine ’ s present and next states. 

 The fi rst process (lines 19 – 26) in the statements part implements the state register. 
As in the template, this is a standard code with clock and reset present only in this 
process. 
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 The second and fi nal process (lines 29 – 78) implements the entire combinational 
logic section. It is just a list of all states, each containing the output values and the 
next state. Note that in each state the output values are unique because in a Moore 
machine the outputs depend only on the state in which the machine is. 

 Observe the correct use of registers and the completeness of the code, as described 
in comment 10 of section 6.3. Note in particular the following: 

 1)   Regarding the use of registers: The circuit is not overregistered. This can be observed 
in the  elsif rising_edge(clk)  statement of line 23 (responsible for the inference of 
fl ip-fl ops), which is closed in line 25, guaranteeing that only the machine state (line 
24) gets stored. The outputs are in the next process, which is purely combinational 
(thus not registered). 
 2)   Regarding the outputs: The list of outputs ( selA ,  selB ,  wrA ,  wrB ,  ALUop ) is exactly 
the same in all states (see lines 33 – 37, 44 – 48, 51 – 55, . . .), and the corresponding 
output values are always properly declared. 
 3)   Regarding the next state: Again, the coverage is complete because all states are 
included (see lines 32, 43, 50, . . .), and in each state any conditional declarations for 
the next state are fi nalized with an  else  statement (lines 40 and 60), guaranteeing that 
no condition is left unchecked.  

  1    -----------------------------------------------------  
  2    library ieee;  
  3    use ieee.std_logic_1164.all;  
  4    -----------------------------------------------------  
  5    entity control_unit_for_GCD is  
  6    port (  
  7    dv, clk, rst: in std_logic;  
  8    sign: in std_logic_vector(1 downto 0)  
  9    selA, selB, wrA, wrB: out std_logic;  
  10    ALUop: out std_logic_vector(1 downto 0));  
  11    end entity;  
  12    -----------------------------------------------------  
  13    architecture moore_fsm of control_unit_for_GCD is   
  14    type state is (idle, load, waitt, writeA, writeB);   
  15    signal pr_state, nx_state: state;  
  16    begin  
  17  
  18    --FSM state register:  
  19    process (clk, rst)  
  20    begin  
  21    if rst='1' then  
  22    pr_state  < = idle;  
  23    elsif rising_edge(clk) then  
  24    pr_state  < = nx_state;  
  25    end if;  
  26    end process;  
  27  
  28    --FSM combinational logic:  
  29    process (all)  --or (pr_state, dv, sign)  
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  30    begin    
  31    case pr_state is  
  32    when idle = >   
  33    selA  < = '-';   
  34    selB  < = '-';   
  35    wrA  < = '0';   
  36    wrB  < = '0';   
  37    ALUop  < = "00";  
  38    if dv='1' then  
  39     nx_state  < = load;  
  40    else  
  41    nx_state  < = idle;  
  42    end if;  
  43    when load = >   
  44    selA  < = '1';   
  45    selB  < = '1';   
  46    wrA  < = '1';   
  47    wrB  < = '1';   
  48    ALUop  < = "00";  
  49    nx_state  < = waitt;  
  50    when waitt = >   
  51    selA  < = '-';   
  52    selB  < = '-';   
  53    wrA  < = '0';   
  54    wrB  < = '0';   
  55    ALUop  < = "10";  
  56    if sign="01" then  
  57     nx_state  < = writeA;  
  58    elsif sign="10" then  
  59     nx_state  < = writeB;  
  60    else  
  61    nx_state  < = idle;  
  62    end if;  
  63    when writeA = >   
  64    selA  < = '0';   
  65    selB  < = '-';   
  66    wrA  < = '1';   
  67    wrB  < = '0';   
  68    ALUop  < = "10";  
  69    nx_state  < = waitt;   
  70    when writeB = >   
  71    selA  < = '-';   
  72    selB  < = '0';   
  73    wrA  < = '0';   
  74    wrB  < = '1';   
  75    ALUop  < = "11";  
  76    nx_state  < = waitt;   
  77    end case;  
  78    end process;  
  79  
  80    end architecture;  
  81    -----------------------------------------------------  

   Simulation results are presented in   fi gure 6.5 . The encoding chosen for the states 
was  sequential  (section 3.7). The states are enumerated from 0 to 4 (there are fi ve states) 
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 Figure 6.5 
 Simulation results from the VHDL code for the control unit of fi gure 5.13e, which controls a 

datapath for GCD calculation. 

in the order in which they were declared in line 14 (be aware, however, that some 
compilers reserve the value zero for the reset state). The stimuli are exactly as in fi gure 
5.13d (GCD for 9 and 15). The reader is invited to inspect these results and compare 
them against the waveforms in fi gure 5.13d.    

 6.9   Exercises 

 Exercise 6.1: Parity Detector 
 This exercise concerns the parity detector of fi gure 5.5c. 

 a)   How many fl ip-fl ops are needed to implement it with sequential and one-hot 
encoding? 
 b)   Implement it using VHDL. Check whether the number of DFFs inferred by the 
compiler matches each of your predictions. 
 c)   Simulate it using the same stimuli of fi gure 5.5b and check if the same waveform 
results for  y . 

 Exercise 6.2: One-Shot Circuits 
 This exercise concerns the one-shot circuits of fi gures 5.7c,d. 

 a)   Solve exercise 5.5 if not done yet. 
 b)   How many fl ip-fl ops are needed to implement each FSM with sequential 
encoding? 
 c)   Implement both circuits using VHDL. Check whether the number of DFFs inferred 
by the compiler matches each of your predictions. 
 d)   Simulate each circuit using the same stimuli of exercise 5.5 (fi gure 5.16) and check 
whether the same results are obtained here. 
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 Exercise 6.3: Manchester Encoder 
 This exercise concerns the Manchester encoder treated in exercise 5.8. 

 a)   Solve exercise 5.8 if not done yet. 
 b)   Implement the Moore machine relative to part a of that exercise using VHDL. 
Simulate it using the same stimuli of part b, checking if the results match. 
 c)   Implement the Mealy machine relative to part c of that exercise using VHDL. Simu-
late it using the same stimuli of part d, checking if the results match. 

 Exercise 6.4: Differential Manchester Encoder 
 This exercise concerns the differential Manchester encoder treated in exercise 5.9. 

 a)   Solve exercise 5.9 if not done yet. 
 b)   Implement the FSM relative to part a of that exercise using VHDL. Simulate it using 
the same waveforms of part b, checking if the results match. 

 Exercise 6.5: String Detector 
 This exercise concerns the string detector of fi gure 5.14a, which detects the sequence 
 “  abc  ” . 

 a)   Solve exercise 5.12 if not done yet. 
 b)   Implement the FSM of fi gure 5.14a using VHDL. Simulate it using the same stimuli 
of exercise 5.12, checking if the same results are obtained here. 

 Exercise 6.6: Generic String Detector 
 This exercise concerns the generic string detector of fi gure 5.14b. Implement it using 
VHDL and simulate it for the following cases: 

 a)   To detect the sequence  “  abc  ” . 
 b)   To detect the sequence  “  aab  ” . 
 c)   To detect the sequence  “  aaa  ” . 

 Exercise 6.7: Keypad Encoder 
 This exercise concerns the keypad encoder treated in exercise 5.14. It is repeated 
in   fi gure 6.6 , with a seven-segment display (SSD — see fi gure 8.13) at the output, 
which must display the last key pressed (use the characters  “ A ”  and  “ b ”  for * 
and #, respectively). (A deboucer is generally needed in this kind of design; see 
exercise 8.9.) 

 a)   Solve exercise 5.14 if not done yet. 
 b)   Implement the FSM obtained above using VHDL. Instead of encoding  r (3:0) accord-
ing to the table in fi gure 5.23c, encode it as an SSD driver, using the table in fi gure 
8.13d (so  key  is now a 7-bit signal). 
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 c)   Physically test your design by connecting an actual keypad (or an arrangement of 
pushbuttons) to the FPGA in your development board, with  key  displayed by one of 
the board ’ s SSDs.  

   Exercise 6.8: Datapath Controller for a Largest-Value Detector 
 This exercise concerns the control unit treated in exercise 5.15. 

 a)   Solve exercise 5.15 if not done yet. 
 b)   Implement the FSM obtained above using VHDL. Present meaningful simulation 
results. 
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