
 6 VHDL Design of Regular (Category 1) State Machines

 6.1 Introduction

 This chapter presents several VHDL designs of category 1 state machines. It starts by
presenting two VHDL templates, for Moore- and Mealy-based implementations, which
are used subsequently to develop a series of designs related to the examples introduced
in chapter 5.

 The codes are always complete (not only partial sketches) and are accompanied by
comments and simulation results, illustrating the design ’ s main features. All circuits
were synthesized using Quartus II (from Altera) or ISE (from Xilinx). The simulations
were performed with Quartus II or ModelSim (from Mentor Graphics). The default
encoding scheme for the states of the FSMs was regular sequential encoding (see
encoding options in section 3.7; see ways of selecting the encoding scheme at the end
of section 6.3).

 The same designs will be presented in chapter 7 using SystemVerilog, so the reader
can make a direct comparison between the codes.

 Note: See suggestions of VHDL books in the bibliography.

 6.2 General Structure of VHDL Code

 A typical structure of VHDL code for synthesis, with all elements that are needed in
this and in coming chapters, is depicted in fi gure 6.1 . It is composed of three funda-
mental sections, briefl y described below.

 Library/Package Declarations
 As the name says, it contains the libraries and corresponding packages needed in the
design. The most common package is std_logic_1164 , from the IEEE library, which
defi nes the types std_logic (for single bit) and std_logic_vector (for multiple bits), which
are the industry standard.

106 Chapter 6

 Entity
 The entity is divided into two main parts, called generic and port .

 Generic: This portion is optional. It is used for the declaration of global parameters,
which can be easily modifi ed to fulfi ll different system specifi cations or, more impor-
tantly, can be overridden during instantiations (using the component construct) into
other designs.
 Port: This part of the code is mandatory for synthesis. It is just a list with specifi -
cations of all circuit ports (I/Os), including their name, mode (in , out , inout , or buffer),
and type (plus range).

 Architecture
 The architecture too is divided into two parts, called declarative part and statements part .

 Declarative part: This section precedes the keyword begin and is optional. It is used
for all sorts of local declarations, including type , signal , and component . It also allows
the construction of function and procedure . These declarations and functions/
procedures can also be placed outside the main code, in a package .
 Statements part: This portion, which starts at the keyword begin , constitutes the
code proper. As shown in fi gure 6.1 , its main elements (in no particular order) are
the following: basic expressions using operators (for simple combinational circuits);
expressions using concurrent statements (when , select , generate), generally for simple

 Figure 6.1
 Typical VHDL code structure for synthesis.

VHDL Design of Regular (Category 1) State Machines 107

to midcomplexity combinational circuits; sequential code using process , which is
constructed using sequential statements (if , case , loop , wait), for sequential as well
as (complex) combinational circuits; function / procedure calls; and, fi nally, compo-
nent (that is, other design) instantiations, resulting in structural designs.

 6.3 VHDL Template for Regular (Category 1) Moore Machines

 The template is based on fi gure 6.2 (derived from fi gure 5.2), which shows three pro-
cesses: 1) for the FSM state register; 2) for the FSM combinational logic; and 3) for the
optional output register. Note the asterisk on one of the input connections; as we
know, if that connection exists it is a Mealy machine, else it is a Moore machine.

 There obviously are other ways of breaking the code instead of using the three
processes indicated in fi gure 6.2 . For example, the combinational logic section, being
not sequential, could be implemented without a process (using purely concurrent
code). At the other extreme the combinational logic section could be implement ed
with two processes, one with the logic for output , the other with the logic for nx_
state .

 The VHDL template for the design of category 1 Moore machines, based on fi gures
6.1 and 6.2 , is presented below. Observe the following:

 1) To improve readability, the three fundamental code sections (library/package dec-
larations, entity, and architecture) are separated by dashed lines (lines 1, 4, 14, 76).
 2) The library/package declarations (lines 2 – 3) show the package std_logic_1164 ,
needed because the types used in the ports of all designs will be std_logic and/or std_
logic_vector (industry standard).
 3) The entity, called circuit , is in lines 5 – 13. As seen in fi gure 6.1 , it usually contains
two parts: generic (optional) and port (mandatory for synthesis). The former is
employed for the declaration of generic parameters (if they exist), as illustrated in lines
6 – 8. The latter is a list of all circuit ports, with respective specifi cations, as illustrated

 Figure 6.2
 State machine architecture depicting how the VHDL code was broken (three processes).

108 Chapter 6

in lines 9 – 12. Note that the type used for all ports (lines 10 – 12) is indeed std_logic or
 std_logic_vector .
 4) The architecture, called moore_fsm , is in lines 15 – 75. It too is divided into two parts:
declarative part (optional) and statements part (code proper, so mandatory).
 5) The declarative part of the architecture is in lines 16 – 19. In lines 16 – 17 a special
enumerated type, called state , is created, and then the signals pr_state and nx_state are
declared using that type. In lines 18 – 19 an optional attribute called enum_encoding is
shown, which defi nes the type of encoding desired for the machine ’ s states (e.g.,
 “ sequential ” , “ one-hot ”). Another related attribute is fsm_encoding . See a description
for both attributes after the template below. The encoding scheme can also be chosen
using the compiler ’ s setup, in which case lines 18 – 19 can be removed.
 6) The statements part (code proper) of the architecture is in lines 20 – 75 (from begin
on). In this template it is composed of three process blocks, described below.
 7) The fi rst process (lines 23 – 30) implements the state register (process 1 of fi gure 6.2).
Because all of the machine ’ s DFFs are in this section, clock and reset are only con-
nected to this block (plus to the optional output register, of course, but that is not
part of the FSM proper). Note that the code for this process is essentially standard,
simply copying nx_state to pr_state at every positive clock transition (thus inferring
the DFFs that store the machine ’ s state).
 8) The second process (lines 33 – 61) implements the entire combinational logic section
of the FSM (process 2 of fi gure 6.2). This part must contain all states (A, B, C, . . .),
and for each state two things must be declared: the output values/expressions and the
next state. Observe, for example, in lines 36 – 46, relative to state A, the output declara-
tions in lines 37 – 39 and the next-state declarations in lines 40 – 46. A very important
point to note here is that there is no if statement associated with the outputs because
in a Moore machine the outputs depend solely on the state in which the machine is,
so for a given state each output value/expression is unique.
 9) The third and fi nal process (lines 64 – 73) implements the optional output register
(process 3 of fi gure 6.2). Note that it simply copies each original output to a new
output at every positive clock edge (it could also be at the negative edge), thus infer-
ring the extra register. If this register is used, then the names of the new outputs must
obviously be the names used in the corresponding port declarations (line 12). If the
initial output values do not matter, reset is not required in this register.
 10) To conclude, observe the completeness of the code and the correct use of registers
(as requested in sections 4.2.8 and 4.2.9, respectively), summarized below.

 a) Regarding the use of registers: The circuit is not overregistered. This can be
observed in the elsif rising_edge(clk) statement of line 27 (responsible for the infer-
ence of fl ip-fl ops), which is closed in line 29, guaranteeing that only the machine
state (line 28) gets registered. The circuit outputs are in the next process, which is
purely combinational.

VHDL Design of Regular (Category 1) State Machines 109

 b) Regarding the outputs: The list of outputs (output1 , output2 , . . .) is the same in
all states (see lines 37 – 39, 48 – 50, . . .), and the output values (or expressions) are
always declared.
 c) Regarding the next state: Again, the coverage is complete because all states (A, B,
C, . . .) are included, and in each state the declarations are fi nalized with an else
statement (lines 44, 55, . . .), guaranteeing that no condition is left unchecked.

 Note 1: See also the comments in sections 6.4, which show some template variations.

 Note 2: The VHDL 2008 review of the VHDL standard added the keyword all as a replace-
ment for a process ’ sensitivity list, so process (all) is now valid. It also added boolean
tests for std_logic signals and variables, so if x= ‘ 1 ’ then . . . can be replaced with if x
then. . . . Both are supported by the current version (12.1) of Altera ’ s Quartus II compiler
but not yet by the current version (14.2) of Xilinx ’ s ISE suite (XST compiler).

 Note 3: Another implementation approach, for simple FSMs, will be seen in chapter 15.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 generic (
 7 param1: std_logic_vector(...) := < value > ;
 8 param2: std_logic_vector(...) := < value >);
 9 port (
 10 clk, rst: in std_logic;
 11 input1, input2, ...: in std_logic_vector(...);
 12 output1, output2, ...: out std_logic_vector(...);
 13 end entity;
 14 ---
 15 architecture moore_fsm of circuit is
 16 type state is (A, B, C, ...);
 17 signal pr_state, nx_state: state;
 18 attribute enum_encoding: string; --optional, see comments
 19 attribute enum_encoding of state: type is "sequential";
 20 begin
 21
 22 --FSM state register:
 23 process (clk, rst)
 24 begin
 25 if rst='1' then --see Note 2 above on boolean tests
 26 pr_state < = A;
 27 elsif rising_edge(clk) then
 28 pr_state < = nx_state;
 29 end if;
 30 end process;
 31
 32 --FSM combinational logic:
 33 process (all) --see Note 2 above on "all" keyword
 34 begin
 35 case pr_state is

110 Chapter 6

 36 when A = >
 37 output1 < = < value > ;
 38 output2 < = < value > ;
 39 ...
 40 if < condition > then
 41 nx_state < = B;
 42 elsif < condition > then
 43 nx_state < = ...;
 44 else
 45 nx_state < = A;
 46 end if;
 47 when B = >
 48 output1 < = < value > ;
 49 output2 < = < value > ;
 50 ...
 51 if < condition > then
 52 nx_state < = C;
 53 elsif < condition > then
 54 nx_state < = ...;
 55 else
 56 nx_state < = B;
 57 end if;
 58 when C = >
 59 ...
 60 end case;
 61 end process;
 62
 63 --Optional output register:
 64 process (clk, rst)
 65 begin
 66 if rst='1' then --rst generally optional here
 67 new_output1 < = ...;
 68 ...
 69 elsif rising_edge(clk) then
 70 new_output1 < = output1;
 71 ...
 72 end if;
 73 end process;
 74
 75 end architecture;
 76 ---

 Final Comments

 1) On the need for a reset signal: Note in the template above that the sequential
portion of the FSM (process of lines 23 – 30) has a reset signal. As seen in sections 3.8
and 3.9, that is the usual situation. However, as also seen in those sections, if the
circuit is implemented in an FPGA (so the fl ip-fl ops are automatically reset on power-up)
and the codeword assigned to the intended initial (reset) state is the all-zero codeword,
then reset will occur automatically.
 2) On the enum_encoding and fsm_encoding attributes: As mentioned earlier, these
attributes can be used to select the desired encoding scheme (“ sequential ” , “ one-hot ” ,
 “ 001 011 010 ” , and others — see options in section 3.7), overriding the compiler ’ s

VHDL Design of Regular (Category 1) State Machines 111

setup. It is important to mention, however, that support for these attributes varies
among synthesis compilers. For example, Altera ’ s Quartus II has full support for
 enum_encoding , so both examples below are fi ne (where “ sequential ” can also be “ one-
hot ” , “ gray ” , and so on):

 attribute enum_encoding: string;

 attribute enum_encoding of state: type is "sequential";

 attribute enum_encoding: string;

 attribute enum_encoding of state: type is "001 100 101"; --user defined

 Xilinx ’ s XST (from the ISE suite), on the other hand, only supports enum_encoding
for user-defi ned encoding; for the others (“ sequential ” , “ one-hot ” , etc.), fsm_encoding
can be used. Two valid examples are shown below:

 attribute enum_encoding: string;

 attribute enum_encoding of state: type is "001 100 101";

 attribute fsm_encoding: string;

 attribute fsm_encoding of pr_state: signal is "sequential";

 6.4 Template Variations

 The template of section 6.3 can be modifi ed in several ways with little or no effect on
the fi nal result. Some options are described below. These modifi cations are extensible
to the Mealy template treated in the next section.

 6.4.1 Combinational Logic Separated into Two Processes
 A variation sometimes helpful from a didactic point of view is to separate the FSM
combinational logic process into two processes: one for the output, another for the
next state. Below, the process for the output logic is in lines 33 – 47, and that for the
next state logic is in lines 50 – 69.

 32 --FSM combinational logic for output:
 33 process (all)
 34 begin
 35 case pr_state is
 36 when A = >
 37 output1 < = < value > ;
 38 output2 < = < value > ;
 39 ...
 40 when B = >
 41 output1 < = < value > ;
 42 output2 < = < value > ;
 43 ...
 44 when C = >

112 Chapter 6

 45 ...
 46 end case;
 47 end process;
 48
 49 --FSM combinational logic for next state:
 50 process (all)
 51 begin
 52 case pr_state is
 53 when A = >
 54 if < condition > then
 55 nx_state < = B;
 56 elsif < condition > then
 57 nx_state < = ...;
 58 else
 59 nx_state < = A;
 60 end if;
 61 when B = >
 62 if < condition > then
 63 nx_state < = C;
 64 ...
 65 end if;
 66 when C = >
 67 ...
 68 end case;
 69 end process;

 6.4.2 State Register Plus Output Register in a Single Process
 A variation in the other direction (reducing the number of processes from three to
two instead of increasing it to four) consists of joining the process for the state register
with that for the output register. This is not recommended for three reasons. First, in
most projects the optional output register is not needed. Second, having the output
register in a separate process helps remind the designer that the need or not for such
a register is an important case-by-case decision. Third, one might want to have the
output register operating at the other (negative) clock edge, which is better emphasized
by using separate processes.

 6.4.3 Using Default Values
 When the same signal or variable value appears several times inside the same process,
a default value can be entered at the beginning of the process. An example is shown
below for the process of the combinational logic section, with default values for the
outputs included in lines 36 – 38. In lines 40 – 45 only the values that disagree with
these must then be typed in. An example in which default values are used is seen in
section 12.4.

 32 --FSM combinational logic:
 33 process (all)
 34 begin

VHDL Design of Regular (Category 1) State Machines 113

 35 --Default values:
 36 output1 < = < value > ;
 37 output2 < = < value > ;
 38 ...
 39 --Code:
 40 case pr_state is
 41 when A = > ;
 42 ...
 43 when B = >
 44 ...
 45 end case;
 46 end process;

 6.4.4 A Dangerous Template
 A tempting template is shown next. Note that the entire FSM is in a single process
(lines 17 – 43). Its essential point is that the elsif rising_edge(clk) statement encloses
the whole circuit (it opens in line 21 and only closes in line 42), thus registering it
completely (that is, not only the state is stored in fl ip-fl ops — this has to be done
anyway — but also all the outputs).

 This template has several apparent advantages. One is that a shorter code results
(for instance, we can replace pr_state and nx_state with a single name — fsm_state , for
example; also, only one process is needed). Another apparent advantage is that the
code will work (no latches inferred) when the list of outputs is not exactly the same
in all states. Such features, however, might hide serious problems.

 One of the problems is precisely the fact that the outputs are always registered, so
the resulting circuit is never the FSM alone but the FSM plus the optional output
register of fi gure 5.2c, which many times is unwanted.

 Another problem is that, even if the optional output register were needed, we do
not have the freedom to choose in which of the clock edges to operate it because the
same edge is used for the FSM and for the output register in this template, reducing
the design fl exibility.

 A third problem is the fact that, because the list of outputs does not need to be the
same in all states (because they are registered, latches will not be inferred when an
output value is not specifi ed), the designer is prone to overlook the project
specifi cations.

 Finally, it is important to remember that VHDL (and SystemVerilog) is not a
program but a code, and a shorter code does not mean a smaller or better circuit. In
fact, longer, better-organized codes tend to ease the compiler ’ s work, helping to opti-
mize the fi nal circuit.

 In summary, the template below is a particular case of the general template intro-
duced in section 6.3. The general template gets reduced to this one only when all
outputs must be registered and the same clock edge must operate both the state register
and the output register.

114 Chapter 6

 1 --Dangerous template (particular case of the general template)
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 generic (...);
 7 port (
 8 clk, rst: in std_logic;
 9 input, ...: in std_logic_vector(...);
 10 output, ...: out std_logic_vector(...);
 11 end entity;
 12 ---
 13 architecture moore_fsm of circuit is
 14 type state is (A, B, C, ...);
 15 signal fsm_state: state;
 16 begin
 17 process (clk, rst)
 18 begin
 19 if rst then
 20 fsm_state < = A;
 21 elsif rising_edge(clk) then
 22 case fsm_state is
 23 when A = >
 24 output < = < value > ;
 25 if < condition > then
 26 fsm_state < = B;
 27 elsif < condition > then
 28 fsm_state < = ...;
 29 else
 30 fsm_state < = A;
 31 end if;
 32 when B = >
 33 output < = < value > ;
 34 if < condition > then
 35 ...
 36 else
 37 fsm_state < = B;
 38 end if;
 39 when C = >
 40 ...
 41 end case;
 42 end if;
 43 end process;
 44 ---

 6.5 VHDL Template for Regular (Category 1) Mealy Machines

 This template, also based on fi gures 6.1 and 6.2 , is presented below. The only differ-
ence with respect to the Moore template just presented is in the process for the com-
binational logic because the output is specifi ed differently now. Recall that in a Mealy
machine the output depends not only on the FSM ’ s state but also on its input, so if
statements are expected for the output in one or more states because the output values
might not be unique. This is achieved by including the output within the conditional

VHDL Design of Regular (Category 1) State Machines 115

statements for nx_state . For example, observe in lines 20 – 36, relative to state A, that
the output values are now conditional. Compare these lines against lines 36 – 46 in the
template of section 6.3.

 Please review the following comments, which can easily be adapted from the Moore
case to the Mealy case:

 — On the Moore template for category 1, in section 6.3, especially comment 10.
 — On the enum_encoding and fsm_encoding attributes, also in section 6.3.
 — On possible code variations, in section 6.4.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity circuit is
 6 (same as for category 1 Moore, section 6.3)
 7 end entity;
 8 ---
 9 architecture mealy_fsm of circuit IS
 10 (same as for category 1 Moore, Section 6.3)
 11 begin
 12
 13 --FSM state register:
 14 (same as for category 1 Moore, section 6.3)
 15
 16 --FSM combinational logic:
 17 process (all) --list proc. inputs if “ all ” not supported
 18 begin
 19 case pr_state is
 20 when A = >
 21 if < condition > then
 22 output1 < = < value > ;
 23 output2 < = < value > ;
 24 ...
 25 nx_state < = B;
 26 elsif < condition > then
 27 output1 < = < value > ;
 28 output2 < = < value > ;
 29 ...
 30 nx_state < = ...;
 31 else
 32 output1 < = < value > ;
 33 output2 < = < value > ;
 34 ...
 35 nx_state < = A;
 36 end if;
 37 when B = >
 38 if < condition > then
 39 output1 < = < value > ;
 40 output2 < = < value > ;
 41 ...
 42 nx_state < = C;
 43 elsif < condition > then

116 Chapter 6

 44 output1 < = < value > ;
 45 output2 < = < value > ;
 46 ...
 47 nx_state < = ...;
 48 else
 49 output1 < = < value > ;
 50 output2 < = < value > ;
 51 ...
 52 nx_state < = B;
 53 end if;
 54 when C = >
 55 ...
 56 end case;
 57 end process;
 58
 59 --Optional output register:
 60 (same as for category 1 Moore, section 6.3)
 61
 62 end architecture;
 63 ---

 6.6 Design of a Small Counter

 This section presents a VHDL-based design for the 1-to-5 counter with enable and
up-down controls introduced in section 5.4.1 (fi gure 5.3).

 Because counters are inherently synchronous, the Moore approach is the natural
choice for their implementation, so the VHDL template of section 6.3 is used. Because
possible glitches during (positive) clock transitions are generally not a problem in
counters, the optional output register shown in the last process of the template is not
employed.

 The entity, called counter , is in lines 5 – 9. All ports are of type std_logic or std_logic_
vector (industry standard).

 The architecture, called moore_fsm , is in lines 11 – 88. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 12 – 13), the enumerated type state
is created to represent the machine ’ s present and next states. Recall that when neither
the enum_encoding nor the fsm_encoding attribute is used, the encoding scheme must
be selected in the compiler ’ s setup.

 The fi rst process (lines 17 – 24) in the statements part implements the state register.
As in the template, this is a standard code with clock and reset present only in this
process.

 The second and fi nal process (lines 27 – 86) implements the entire combinational
logic section. It is just a list of all states, each containing the output value and the
next state. Note that in each state the output value is unique because in a Moore
machine the output depends only on the state in which the machine is.

VHDL Design of Regular (Category 1) State Machines 117

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 21 (responsible for the inference of
fl ip-fl ops), which is closed in line 23, guaranteeing that only the machine state (line
22) gets stored. The output (outp) is in the next process, which is purely combinational
(thus not registered).
 2) Regarding the outputs: The list of outputs (just outp in this example) is exactly the
same in all states (see lines 31, 42, 53, 64, 75), and the corresponding output values
are always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 30, 41, 52, 63, 74), and in each state the conditional declarations
for the next state are always fi nalized with an else statement (lines 38, 49, 60, 71, 82),
guaranteeing that no condition is left unchecked.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity counter is
 6 port (
 7 ena, up, clk, rst: in std_logic;
 8 outp: out std_logic_vector(2 downto 0));
 9 end entity;
 10 ---
 11 architecture moore_fsm of counter is
 12 type state is (one, two, three, four, five);
 13 signal pr_state, nx_state: state;
 14 begin
 15
 16 --FSM state register:
 17 process (clk, rst)
 18 begin
 19 if rst='1' then
 20 pr_state < = one;
 21 elsif rising_edge(clk) then
 22 pr_state < = nx_state;
 23 end if;
 24 end process;
 25
 26 --FSM combinational logic:
 27 process (all) --list proc. inputs if "all" not supported
 28 begin
 29 case pr_state is
 30 when one = >
 31 outp < = "001";
 32 if ena='1' then
 33 if up='1' then
 34 nx_state < = two;
 35 else

118 Chapter 6

 36 nx_state < = five;
 37 end if;
 38 else
 39 nx_state < = one;
 40 end if;
 41 when two = >
 42 outp < = "010";
 43 if ena='1' then
 44 if up='1' then
 45 nx_state < = three;
 46 else
 47 nx_state < = one;
 48 end if;
 49 else
 50 nx_state < = two;
 51 end if;
 52 when three = >
 53 outp < = "011";
 54 if ena='1' then
 55 if up='1' then
 56 nx_state < = four;
 57 else
 58 nx_state < = two;
 59 end if;
 60 else
 61 nx_state < = three;
 62 end if;
 63 when four = >
 64 outp < = "100";
 65 if ena='1' then
 66 if up='1' then
 67 nx_state < = five;
 68 else
 69 nx_state < = three;
 70 end if;
 71 else
 72 nx_state < = four;
 73 end if;
 74 when five = >
 75 outp < = "101";
 76 if ena='1' then
 77 if up='1' then
 78 nx_state < = one;
 79 else
 80 nx_state < = four;
 81 end if;
 82 else
 83 nx_state < = five;
 84 end if;
 85 end case;
 86 end process;
 87
 88 end architecture;
 89 ---

 Synthesis results using the VHDL code above are presented in fi gure 6.3 . The cir-
cuit ’ s structure can be seen in the RTL view of fi gure 6.3a , while the FSM can be seen

VHDL Design of Regular (Category 1) State Machines 119

 Figure 6.3
 Results from the VHDL code for the 1-to-5 counter with enable and up-down controls of fi gure

5.3. (a) RTL view. (b) State machine view. (c) Simulation results.

in fi gure 6.3b . As expected, the latter coincides with the intended state transition
diagram (fi gure 5.3). Simulation results are exhibited in fi gure 6.3c . Note that the
output changes only at positive clock transitions, counting up when up = ‘ 1 ’ , down
when up = ‘ 0 ’ , and stopping if ena = ‘ 0 ’ .

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above
was three for sequential, Gray, or Johnson encoding and fi ve for one-hot, matching
the predictions made in section 5.4.1.

 Note: As smentioned in section 5.4.1, counters can be designed very easily without
employing the FSM approach when using VHDL or SystemVerilog. The design above
was included, nevertheless, because it illustrates well the construction of VHDL code
for category 1 machines. A similar counter, but without the up-down control, results
from the code below, where the FSM technique is not employed. Moreover, it is fi ne
for any number of bits.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 use ieee.std_logic_arith.all;
 5 --
 6 entity counter is
 7 generic (
 8 bits: natural := 3;
 9 xmin: natural := 1;
 10 xmax: natural := 5);
 11 port (
 12 clk, rst, ena: in std_logic;

120 Chapter 6

 13 x_out: out std_logic_vector(bits-1 downto 0));
 14 end entity;
 15 --
 16 architecture direct_counter of counter is
 17 signal x: natural range 0 to xmax;
 18 begin
 19 process (clk, rst)
 20 begin
 21 if rst='1' then
 22 x < = xmin;
 23 elsif rising_edge(clk) and ena='1' then
 24 if x < xmax then
 25 x < = x + 1;
 26 else
 27 x < = xmin;
 28 end if;
 29 end if;
 30 end process;
 31 x_out < = conv_std_logic_vector(x, bits);
 32 end architecture;
 33 --

 6.7 Design of a Garage Door Controller

 This section presents a VHDL-based design for the garage door controller introduced
in section 5.4.5. The Moore template of section 6.3 is employed to implement the
FSM of fi gure 5.9c.

 The entity, called garage_door_controller , is in lines 5 – 9. All ports are of type std_logic
or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 11 – 94. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 12 – 14), the enumerated type state
is created to represent the machine ’ s present and next states.

 The fi rst process (lines 18 – 25) in the statements part implements the state register. As
in the template, this is a standard code with clock and reset present only in this process.

 The second and fi nal process (lines 28 – 92) implements the entire combinational
logic section. It is just a list of all states, each containing the output value and the
next state. Note that in each state the output value is unique because in a Moore
machine the output depends only on the state in which the machine is.

 Observe the correct use of registers and the completeness of the code as described
in comment number 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 22 (responsible for the inference of
fl ip-fl ops), which is closed in line 24, guaranteeing that only the machine state (line
23) gets stored. The output (ctr) is in the next process, which is purely combinational
(thus not registered).

VHDL Design of Regular (Category 1) State Machines 121

 2) Regarding the outputs: The list of outputs (just ctr in this example) is exactly the
same in all states (see lines 32, 39, 46, …), and the corresponding output value is
always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 31, 38, 45, …), and in each state the conditional declarations for
the next state are always fi nalized with an else statement (lines 35, 42, 51, …), guar-
anteeing that no condition is left unchecked.

 1 --
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 --
 5 entity garage_door_controller is
 6 port (
 7 remt, sen1, sen2, clk, rst: in std_logic;
 8 ctr: out std_logic_vector(1 downto 0));
 9 end entity;
 10 --
 11 architecture moore_fsm of garage_door_controller is
 12 type state is (closed1, closed2, opening1, opening2,
 13 open1, open2, closing1, closing2);
 14 signal pr_state, nx_state: state;
 15 begin
 16
 17 --FSM state register:
 18 process (clk, rst)
 19 begin
 20 if rst='1' then
 21 pr_state < = closed1;
 22 elsif rising_edge(clk) then
 23 pr_state < = nx_state;
 24 end if;
 25 end process;
 26
 27 --FSM combinational logic:
 28 process (all) --or (pr_state, remt, sen1, sen2)
 29 begin
 30 case pr_state is
 31 when closed1 = >
 32 ctr < = "0-";
 33 if remt='0' then
 34 nx_state < = closed2;
 35 else
 36 nx_state < = closed1;
 37 end if;
 38 when closed2 = >
 39 ctr < = "0-";
 40 if remt='1' then
 41 nx_state < = opening1;
 42 else
 43 nx_state < = closed2;
 44 end if;
 45 when opening1 = >

122 Chapter 6

 46 ctr < = "10";
 47 if sen1='1' then
 48 nx_state < = open1;
 49 elsif remt='0' then
 50 nx_state < = opening2;
 51 else
 52 nx_state < = opening1;
 53 end if;
 54 when opening2 = >
 55 ctr < = "10";
 56 if remt='1' or sen1='1' then
 57 nx_state < = open1;
 58 else
 59 nx_state < = opening2;
 60 end if;
 61 when open1 = >
 62 ctr < = "0-";
 63 if remt='0' then
 64 nx_state < = open2;
 65 else
 66 nx_state < = open1;
 67 end if;
 68 when open2 = >
 69 ctr < = "0-";
 70 if remt='1' then
 71 nx_state < = closing1;
 72 else
 73 nx_state < = open2;
 74 end if;
 75 when closing1 = >
 76 ctr < = "11";
 77 if sen2='1' then
 78 nx_state < = closed1;
 79 elsif remt='0' then
 80 nx_state < = closing2;
 81 else
 82 nx_state < = closing1;
 83 end if;
 84 when closing2 = >
 85 ctr < = "11";
 86 if remt='1' or sen2='1' then
 87 nx_state < = closed1;
 88 else
 89 nx_state < = closing2;
 90 end if;
 91 end case;
 92 end process;
 93
 94 end architecture;
 95 ---

 The number of fl ip-fl ops inferred by the compiler after synthesizing the code above
was three for sequential or Gray encoding, four for Johnson, and eight for one-hot,
matching the predictions made in section 5.4.5.

VHDL Design of Regular (Category 1) State Machines 123

 Figure 6.4
 Simulation results from the VHDL code for the garage door controller of fi gure 5.9c.

 Simulation results are depicted in fi gure 6.4 . The encoding chosen for the states
was sequential (section 3.7). The states are enumerated from 0 to 7 (there are eight
states), in the order in which they were declared in lines 12 – 13. Be aware, however,
that some compilers reserve the value zero for the reset state; because the reset (initial)
state in the present example is closed1 (see lines 20 – 21), which is the fi rst state in the
declaration list, that is not a concern here.

 In this simulation the sequence closed1 – closed2 – opening1 – opening2 – open1 – open2 –
 closing1 – closed1 (see state names in the lower part of fi gure 6.4) was tested. Note that
pulses of various widths were used to illustrate the fact that their width has no effect
beyond the fi rst positive clock edge.

 6.8 Design of a Datapath Controller for a Greatest Common Divisor Calculator

 This section presents a VHDL-based design for the control unit introduced in sec-
tion 5.4.8, which controls a datapath to produce a greatest common divisor (GCD)
calculator. The Moore template of section 6.3 is employed to implement the FSM of
fi gure 5.13e.

 The entity, called control_unit_for_GCD , is in lines 5 – 11. All ports are of the type
 std_logic or std_logic_vector (industry standard).

 The architecture, called moore_fsm , is in lines 13 – 80. As usual, it contains a declara-
tive part (before the keyword begin) and a statements part (from begin on).

 In the declarative part of the architecture (lines 14 – 15), the enumerated type state
is created to represent the machine ’ s present and next states.

 The fi rst process (lines 19 – 26) in the statements part implements the state register.
As in the template, this is a standard code with clock and reset present only in this
process.

124 Chapter 6

 The second and fi nal process (lines 29 – 78) implements the entire combinational
logic section. It is just a list of all states, each containing the output values and the
next state. Note that in each state the output values are unique because in a Moore
machine the outputs depend only on the state in which the machine is.

 Observe the correct use of registers and the completeness of the code, as described
in comment 10 of section 6.3. Note in particular the following:

 1) Regarding the use of registers: The circuit is not overregistered. This can be observed
in the elsif rising_edge(clk) statement of line 23 (responsible for the inference of
fl ip-fl ops), which is closed in line 25, guaranteeing that only the machine state (line
24) gets stored. The outputs are in the next process, which is purely combinational
(thus not registered).
 2) Regarding the outputs: The list of outputs (selA , selB , wrA , wrB , ALUop) is exactly
the same in all states (see lines 33 – 37, 44 – 48, 51 – 55, . . .), and the corresponding
output values are always properly declared.
 3) Regarding the next state: Again, the coverage is complete because all states are
included (see lines 32, 43, 50, . . .), and in each state any conditional declarations for
the next state are fi nalized with an else statement (lines 40 and 60), guaranteeing that
no condition is left unchecked.

 1 ---
 2 library ieee;
 3 use ieee.std_logic_1164.all;
 4 ---
 5 entity control_unit_for_GCD is
 6 port (
 7 dv, clk, rst: in std_logic;
 8 sign: in std_logic_vector(1 downto 0)
 9 selA, selB, wrA, wrB: out std_logic;
 10 ALUop: out std_logic_vector(1 downto 0));
 11 end entity;
 12 ---
 13 architecture moore_fsm of control_unit_for_GCD is
 14 type state is (idle, load, waitt, writeA, writeB);
 15 signal pr_state, nx_state: state;
 16 begin
 17
 18 --FSM state register:
 19 process (clk, rst)
 20 begin
 21 if rst='1' then
 22 pr_state < = idle;
 23 elsif rising_edge(clk) then
 24 pr_state < = nx_state;
 25 end if;
 26 end process;
 27
 28 --FSM combinational logic:
 29 process (all) --or (pr_state, dv, sign)

VHDL Design of Regular (Category 1) State Machines 125

 30 begin
 31 case pr_state is
 32 when idle = >
 33 selA < = '-';
 34 selB < = '-';
 35 wrA < = '0';
 36 wrB < = '0';
 37 ALUop < = "00";
 38 if dv='1' then
 39 nx_state < = load;
 40 else
 41 nx_state < = idle;
 42 end if;
 43 when load = >
 44 selA < = '1';
 45 selB < = '1';
 46 wrA < = '1';
 47 wrB < = '1';
 48 ALUop < = "00";
 49 nx_state < = waitt;
 50 when waitt = >
 51 selA < = '-';
 52 selB < = '-';
 53 wrA < = '0';
 54 wrB < = '0';
 55 ALUop < = "10";
 56 if sign="01" then
 57 nx_state < = writeA;
 58 elsif sign="10" then
 59 nx_state < = writeB;
 60 else
 61 nx_state < = idle;
 62 end if;
 63 when writeA = >
 64 selA < = '0';
 65 selB < = '-';
 66 wrA < = '1';
 67 wrB < = '0';
 68 ALUop < = "10";
 69 nx_state < = waitt;
 70 when writeB = >
 71 selA < = '-';
 72 selB < = '0';
 73 wrA < = '0';
 74 wrB < = '1';
 75 ALUop < = "11";
 76 nx_state < = waitt;
 77 end case;
 78 end process;
 79
 80 end architecture;
 81 ---

 Simulation results are presented in fi gure 6.5 . The encoding chosen for the states
was sequential (section 3.7). The states are enumerated from 0 to 4 (there are fi ve states)

126 Chapter 6

 Figure 6.5
 Simulation results from the VHDL code for the control unit of fi gure 5.13e, which controls a

datapath for GCD calculation.

in the order in which they were declared in line 14 (be aware, however, that some
compilers reserve the value zero for the reset state). The stimuli are exactly as in fi gure
5.13d (GCD for 9 and 15). The reader is invited to inspect these results and compare
them against the waveforms in fi gure 5.13d.

 6.9 Exercises

 Exercise 6.1: Parity Detector
 This exercise concerns the parity detector of fi gure 5.5c.

 a) How many fl ip-fl ops are needed to implement it with sequential and one-hot
encoding?
 b) Implement it using VHDL. Check whether the number of DFFs inferred by the
compiler matches each of your predictions.
 c) Simulate it using the same stimuli of fi gure 5.5b and check if the same waveform
results for y .

 Exercise 6.2: One-Shot Circuits
 This exercise concerns the one-shot circuits of fi gures 5.7c,d.

 a) Solve exercise 5.5 if not done yet.
 b) How many fl ip-fl ops are needed to implement each FSM with sequential
encoding?
 c) Implement both circuits using VHDL. Check whether the number of DFFs inferred
by the compiler matches each of your predictions.
 d) Simulate each circuit using the same stimuli of exercise 5.5 (fi gure 5.16) and check
whether the same results are obtained here.

VHDL Design of Regular (Category 1) State Machines 127

 Exercise 6.3: Manchester Encoder
 This exercise concerns the Manchester encoder treated in exercise 5.8.

 a) Solve exercise 5.8 if not done yet.
 b) Implement the Moore machine relative to part a of that exercise using VHDL.
Simulate it using the same stimuli of part b, checking if the results match.
 c) Implement the Mealy machine relative to part c of that exercise using VHDL. Simu-
late it using the same stimuli of part d, checking if the results match.

 Exercise 6.4: Differential Manchester Encoder
 This exercise concerns the differential Manchester encoder treated in exercise 5.9.

 a) Solve exercise 5.9 if not done yet.
 b) Implement the FSM relative to part a of that exercise using VHDL. Simulate it using
the same waveforms of part b, checking if the results match.

 Exercise 6.5: String Detector
 This exercise concerns the string detector of fi gure 5.14a, which detects the sequence
 “ abc ” .

 a) Solve exercise 5.12 if not done yet.
 b) Implement the FSM of fi gure 5.14a using VHDL. Simulate it using the same stimuli
of exercise 5.12, checking if the same results are obtained here.

 Exercise 6.6: Generic String Detector
 This exercise concerns the generic string detector of fi gure 5.14b. Implement it using
VHDL and simulate it for the following cases:

 a) To detect the sequence “ abc ” .
 b) To detect the sequence “ aab ” .
 c) To detect the sequence “ aaa ” .

 Exercise 6.7: Keypad Encoder
 This exercise concerns the keypad encoder treated in exercise 5.14. It is repeated
in fi gure 6.6 , with a seven-segment display (SSD — see fi gure 8.13) at the output,
which must display the last key pressed (use the characters “ A ” and “ b ” for *
and #, respectively). (A deboucer is generally needed in this kind of design; see
exercise 8.9.)

 a) Solve exercise 5.14 if not done yet.
 b) Implement the FSM obtained above using VHDL. Instead of encoding r (3:0) accord-
ing to the table in fi gure 5.23c, encode it as an SSD driver, using the table in fi gure
8.13d (so key is now a 7-bit signal).

128 Chapter 6

 c) Physically test your design by connecting an actual keypad (or an arrangement of
pushbuttons) to the FPGA in your development board, with key displayed by one of
the board ’ s SSDs.

 Exercise 6.8: Datapath Controller for a Largest-Value Detector
 This exercise concerns the control unit treated in exercise 5.15.

 a) Solve exercise 5.15 if not done yet.
 b) Implement the FSM obtained above using VHDL. Present meaningful simulation
results.

 Figure 6.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /None
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

