
1. Introduction

This tutorial is based on Quartus Prime 18.0 Lite Edition (free at intel . com). The cir cuit used
in the tutorial is the registered unsigned adder of figure B.1a, synthesized with the VHDL
code of figure B.1b and simulated with the stimuli of figure B.1c. The adder inputs (a, b) are
3- bit signals, while its output (sum) is a 4- bit signal, so overflow never occurs.

Appendix B: Quartus Prime Tutorial

Figure B.1

http://intel.com

512 Appendix B

2. Synthesizing the Design

a) Start Quartus Prime, which opens the screen of figure B.2a.

b) Click New Proj ect Wizard, then Next, which opens the screen of figure B.2b. Enter the
proj ect location and name (as shown in the figure) and click Finish, which leads to figure B.3a.

c) If this is your first access to Quartus Prime, do the following:

- Set up the default directory for all of your proj ects at Tools > Options > General. At the
bottom of the screen, enter, for example, Default file location: C:/ … /my_designs.

Figure B.2

Quartus Prime Tutorial 513

- Set up the local feedback options by going to Tools > Options > Pro cessing and making
the se lections shown in figure B.3b.

d) To enter the VHDL code (figure B.1b), open the VHDL editor by clicking on or by select-
ing File > New and choosing VHDL File as the entry type. After typing the code, save it as
registered_adder.vhd.

e) Define the VHDL version by selecting Assignments > Settings > Compiler Settings > VHDL
Input and marking VHDL 2008.

f) Select the FPGA in Assignments > Device. If the design is not going to be downloaded to
any device, choose a simpler FPGA family (for example, Cyclone IV over Cyclone V or 10)
 because compilation is usually faster (and there is no direct timing simulation support for the
latter two). The EP4CE10F17C6 device is employed here.

g) Compile the code by clicking or by selecting Pro cessing > Start Compilation. When
the compilation ends, the Compilation Report of figure B.4 is exhibited. This report contains
several pieces of valuable information, some of which are described in the next section.

Note: You can also run just Analy sis and Synthesis () until the syntax has been checked/
fixed.

Figure B.3

514 Appendix B

3. Inspecting Synthesis Results

This part describes some of the results produced by the compiler.

a) Device type and number of pins: Check in figure B.4 if the device is the intended one (in case
one was selected). Check also whether the total number of pins is as expected (3 + 3 + 1 = 7
inputs and 4 + 4 = 8 outputs, totaling 15 pins).

b) Resources usage: It can be given in number of logic ele ments (LEs), number of LUTs, num-
ber of adaptive logic modules (ALMs), and so on and depends on the FPGA. Note that it is
given in “number of LEs” in figure B.4, with 5 used out of > 6k.

c) Number of registers: This is the number of D- type flip- flops (DFFs) inferred by the compiler.
Since sum_reg is a 4- bit signal (figure B.1a), 4 flip- flops are needed, which is indeed what
figure B.4 says.

d) RTL View: This tool shows how the code was understood by the compiler. Select Tools >
Netlist Viewers > RTL Viewer, which exhibits the cir cuit of figure B.5 (or equivalent). Note
that it is in perfect agreement with figure B.1a.

e) Implemented cir cuit: The actual implementation can be seen at Tools > Netlist Viewers >
Technology Map Viewer (Post- Fitting). The compiler always tries to make simplifica-
tions, so in some cases this view is slightly dif fer ent from the RTL view (but with the same
functionality).

Figure B.4

Quartus Prime Tutorial 515

f) Equations: They correspond to the implemented cir cuit. To see them, select Table of Con-
tents > Fitter > Equations. If the equations are not shown, go to Tools > Options > General
> Pro cessing and mark Automatically generate equation files during compilation, then
recompile the code. See also this appendix’s part 7 below (Interpreting Fitter Equations).

4. Simulating the Cir cuit

This is a manual graphical simulation; we draw the input waveforms, based on what the sim-
ulator calculates and how it plots the output waveforms. For an automated simulation (with
testbenches or Tcl scripts), use the ModelSim simulator (Appendix C), which is provided with
the Quartus Prime software, directly.

Note: Quartus Prime 18.0 does not support direct timing simulation for Cyclone V and 10
FPGAs (the timing simulation shown here is for a Cyclone IV E device).

a) Click or select File > New. Select then Verification/Debugging Files > University Pro-
gram VWF and click OK. This opens the wave pane of figure B.6a. Note the default end time
of 1 μs.

b) Now add signals to the waveform editor. To do so, press the right mouse button in the
white area under Name (figure B.6a) and select Insert > Insert Node or Bus, which leads to
figure B.7a.

c) Click Node Finder, which opens the screen of figure B.7b (only the screen will be empty
in your version). In the Filter field, select Pins: all & Registers: post- fitting (or Pins: all if
only the cir cuit ports must be exhibited), then click List. The left column will be filled with
all design signals, partially shown in figure B.7b. Click to send all signals to the right or
select just the desired signals and click . Click OK twice, which leads to figure B.6b.

d) Note in figure B.6b that the signals are arranged in alphabetical order. Move clk to the top
by clicking on it and holding, then dragging it to the desired position.

Figure B.5

Figure B.6

Quartus Prime Tutorial 517

e) Note that the default radix for all signals is binary (denoted by the B letter in the Value
column of figure B.6b). Change the radix of all signals except clk to unsigned decimal. To do
so, select the signals, click the right mouse button, and select Radix > Unsigned Decimal.

f) Change the time range by selecting Edit > Set End Time and entering 320 ns, which leads
to the wave pane of figure B.6c.

g) The grid can also be adjusted by selecting Edit > Grid Size. Keep the default value (10 ns).

h) Now we must draw the input waveforms for clk, a, and b, after which the simulator will com-
pute and draw the output waveforms (sum and sum_reg). The stimuli of figure B.1c are adopted.

- Click on clk to select it. Click then the clock icon and enter 80 ns for the period and
0 for the offset.

- Select the portion of a between 80 ns and 320 ns, then click the arbitrary value icon
and enter 5.

- Repeat the pro cess above for b by selecting the respective time intervals and entering 2,
4, and 7.
The result is shown in figure B.6d and is now ready for simulation.

i) Save the file with the extension .vwf (vector waveform file). You can use the default name
(waveform.vwf).

j) Fi nally, simulate the cir cuit by clicking for functional simulation or for timing
simulation (note that the latter is the simulation shown in figure B.6e). Equivalently, select
Simulation > Run Functional Simulation or Simulation > Run Timing Simulation.

k) Inspect the results and compare them to those in figure B.1c.

Figure B.7

518 Appendix B

5. Making Pin Assignments

Notes:
1) Pin assignments are only allowed if a specific device was selected in part B.2(f).
2) Pin assignments can be deleted with Assignments > Remove Assignments.

a) Select Assignments > Pin Planner or click , which opens the win dow of figure B.8.

b) In each line of the Location column, enter the desired pin number (for example, L2 for
pin PIN_L2, as shown in the figure for signal a(2)).

c) When done, recompile the code.

6. Programming the FPGA

Note: Two files for programming the FPGA can be produced during compilation. That with
extension .pof (programmer object file) is stored in an external nonvolatile memory from
which the FPGA automatically retrieves the program (for self- programming) at power up.
The other, with extension .sof (SRAM object file), programs the FPGA directly, so the con-
figuration is not recovered when the power is turned off. The latter should be used in the
experiments.

a) Connect the FPGA board to a USB port of your computer and turn the board’s power on.

Figure B.8

Quartus Prime Tutorial 519

Note: If it is the first time that you are using that board, the USB- Blaster Driver must be
installed. This generally occurs automatically when the board is powered up.

b) Click the Programmer icon or select Tools > Programmer, which opens the win dow
of figure B.9.

c) Observe the following in figure B.9: The hardware driver is USB- Blaster; the mode is
JTAG; the programmer file is registered_adder.sof (if the file does not show up, click Add
File and select it in the output_files subdirectory); and the Program/Configure box is
checked.

d) Click Start, and the device will be programmed. Observe what happens to the board’s
LEDs during programming.

7. Interpreting Fitter Equations

Below are the main symbols used in the Fitter equations.

a) Logic operators: ! (NOT), & (AND), # (OR), $ (XOR)

b) Flip- flops:

DFF (D, CLK, CLRN, PRN) (DFF with reset and preset, both active low)

DFFE (D, CLK, CLRN, PRN, ENA) (DFF above plus enable)

Figure B.9

mk:@MSITStore:c:/altera/quartusii/bin/quartus.chm::/prim/prim_pu_pinstub_names.htm
mk:@MSITStore:c:/altera/quartusii/bin/quartus.chm::/prim/prim_pu_pinstub_names.htm

520 Appendix B

DFFEA (D, CLK, CLRN, PRN, ENA, ADATA, ALOAD) (DFF above plus asynchronous data
load)

DFFEAS (D, CLK, CLRN, PRN, ENA, ADATA, ALOAD) (DFF above with synchronous clear)

TFFE (T, CLK, CLRN, PRN, ENA) (TFF with reset, preset, and enable)

Note: Recall that in the context of this book a reset signal is called reset when it is asynchronous
and it is called clear when it is synchronous.

mk:@MSITStore:c:/altera/quartusii/bin/quartus.chm::/prim/prim_pu_pinstub_names.htm
mk:@MSITStore:c:/altera/quartusii/bin/quartus.chm::/prim/prim_pu_pinstub_names.htm
mk:@MSITStore:c:/altera/quartusii/bin/quartus.chm::/prim/prim_pu_pinstub_names.htm

