
1.  Introduction

This tutorial is based on Vivado HLx 2018.2 WebPACK (free at xilinx​.com). The circuit used
in the tutorial is the registered unsigned adder of figure A.1a, synthesized with the VHDL
code of figure A.1b. The adder inputs (a, b) are 3-bit signals, while its output (sum) is a 4-bit
signal, so overflow never occurs. Both functional and timing simulations are shown using
the stimuli of figure A.1c and in the following two situations: using a testbench (figure A.1d)
and using a Tcl script (figure A.1e).

The structure of the work library created by Vivado is shown in figure A.2. The registered_
adder.srcs folder contains all source files (files created by the user), divided into three catego-
ries: sources_1 (design files), sim_1 (simulation files), and constrs_1 (constraint files). Note the
file called registered_adder.xpr, which is the Xilinx project file; clicking on it opens the project.

2.  Starting a New Project

a)	 Launch Vivado, which opens the screen of figure A.3a.

b)	 Click Create Project and Next, which leads to figure A.3b. Enter the project name
(registered_adder) and the desired location for the project. Mark Create project subdirectory
and click Next.

c)	 In figure A.3c, mark RTL Project (VHDL, in our case) and Do not specify sources at this
time, then click Next.

d)	 In figure A.3d, select the FPGA device or the FPGA board. In this tutorial, the
XC7A35TCPG236 Artix-7 FPGA is employed. Click Next and Finish, which finally opens the
project Flow Navigator (figure A.4).
Note:  The FPGA selection can be made or changed later at PROJECT MANAGER > Settings.

e)	 Observe on the lefthand side of figure A.4 the several sections of the Flow Naviga-
tor: PROJECT MANAGER, IP INTEGRATOR, SIMULATION, RTL ANALYSIS, SYNTHESIS,

Appendix A: Vivado Tutorial

http://xilinx.com

498	 Appendix A

Figure A.1

Vivado Tutorial	 499

IMPLEMENTATION, and PROGRAM AND DEBUG (compare to the design flow described in
chapter 5).

3.  Entering (and Testing) the Design File

Here, we must enter our VHDL design file (registered_adder.vhd, figure A.1b) The compiler will
check the syntax and compile the code at register transfer level (RTL) level (no synthesis or
placement yet), subsequently showing the corresponding elaborated design (i.e., the circuit,
as understood from the VHDL code). The resulting schematic is equivalent to RTL View in
Quartus Prime.

a)	 Under PROJECT MANAGER, click Add Sources, which opens the window of figure A.5a.
Mark Add or create design sources and click Next.

b)	 In the next screen, click Create File (or click Add Files if the file is already available).

c)	 In figure A.5b, select VHDL and enter the file name (registered_adder), then click OK.

d)	 In figure A.5c, enter the entity name (registered_adder) and the architecture name (rtl).
Click OK and then Finish.

e)	 In figure A.5d, note that registered_adder …  is included in the Design Sources list and
in the Simulation Sources list. Double click the former, which opens the editor (figure A.5f).
Type the VHDL file (registered_adder.vhd, figure A.1b) and save it by clicking .

f)	 In figure A.5e, open the General tab and select Type: VHDL 2008.

g)	 A very important feature of Vivado is that errors in the code of nonsupported VHDL con-
structs are underlined in red. Introduce an intentional error in the code to observe that.

h)	 RTL Analysis: We can now check how our code was understood by Vivado. Under RTL
ANALYSIS, click Open Elaborated Design; when done, click Schematic. The resulting RTL
view is shown in figure A.6, which matches the circuit of figure A.1a.

Figure A.2

500	 Appendix A

Figure A.3

Vivado Tutorial	 501

4.  Doing Behavioral Simulation with Testbench

Notes:

1)	 Recall that functional simulation, still at the RTL stage, is called behavioral simulation.
After Synthesis or after Synthesis plus Implementation, its equivalent is called functional sim-
ulation. Timing simulation only exists for the latter two cases.

2)	 In simple designs, one might opt for skipping behavioral and even functional simulation.
Timing simulation is always indispensable.

3)	 The simulation described here uses a VHDL testbench (see chapter 18; the testbench file
is that of figure A.1d). Another option, described in the next section, is to use a Tcl script.

a)	 The first step is to enter the VHDL testbench file. Under PROJECT MANAGER, click Add
Sources, which opens the window of figure A.5a. This time, mark Add or create simulation
sources and click Next.

b)	 In the next screen, click Create File (or click Add Files if the file is already available).

Figure A.4

Figure A.5

Vivado Tutorial	 503

c)	 In figure A.5b, select VHDL and enter the file name (registered_adder_tb.vhd), then click OK.

d)	 In figure A.5c, enter the entity name (registered_adder_tb, figure A.1b) and the architecture
name (testbench). Click OK and then Finish.

e)	 In figure A.5d, note in the Sources pane that registered_adder_tb - … is added to the Sim-
ulation Sources list. Double click it, which opens the editor (figure A.5f). Type the testbench
file (registered_adder_tb.vhd, figure A.1d) and save it by clicking .

f)	 In figure A.5e, open the General tab and select Type: VHDL 2008.

g)	 We can now run the simulation. Under SIMULATION, select Run Simulation > Run
Behavioral Simulation, which leads to figure A.7a. Move clk to the top if not there yet.
Note:  To break a simulation, select Run > Break.

h)	 Make the following adjustments:

- Change the time to 320 ns at .

- Click the Restart icon .

- Click the Run for time T icon .

- Click the Zoom Fit icon .

- Select all signals except clk of figure A.7a, click the right mouse button, and change the
radix to Radix > Unsigned Decimal.

The final result is shown in figure A.7b.

i)	 Finally, inspect the simulation results of figure A.7b and confirm that they comply with
figure A.1c.

j)	 Click and then for the simulation to advance another 320 ns.

k)	 To end a simulation, close the wave pane or type close_sim –force in the Tcl console.

Figure A.6

504	 Appendix A

5.  Doing Behavioral Simulation with Tcl Script

This section shows how to run a simulation using tool command language (Tcl, pronounced
“tickle”) scripts.

Note:  If you prefer, you can remove the testbench file from the project by right-clicking on
the file name and selecting Remove File from Project.

a)	 Review the Notes at the beginning of part 4 of this appendix.

b)	 The first step is to prepare the Tcl script (check appendix A1, Some Important Tcl Commands
for Vivado, at the end of this tutorial). The script of figure A.1e will be used here. Assuming
again that the clock period in figure A.1c is 80 ns, the total running time is 320 ns.

c)	 You can type the script in the Tcl console (Window > Tcl Console) one line at a time, or
you can save it in a text file and run it all at once. For the former, proceed in (d); for the latter,
jump to (g).

d)	 Under SIMULATION, select Run Simulation > Run Behavioral Simulation. This opens
the waveforms pane of figure A.7a. Move clk to the top if not there yet.

e)	 Enter the Tcl commands. After entering run 320 (and clicking , if necessary), the screen
of figure A.7b will be displayed.

f)	 Now that the simulation is done, play with the simulator by doing parts (h)–(k) of this
appendix’s part 4.

g)	 The Tcl script of figure A.1e can be typed in a text editor and saved (call it registered_adder.
tcl) in the same folder the testbench file was saved before (i.e., registered_adder.srcs/sim_1/new).
Another option is to use Vivado’s editor as follows.

Figure A.7

Vivado Tutorial	 505

h)	 Under PROJECT MANAGER, click Add Sources, which leads to figure A.5a. Mark Add or
create simulation sources and click Next.

i)	 In the next screen, click Create File.

j)	 In figure A.5b, select Memory File and enter the file name (registered_adder.tcl), then click
OK.

k)	 Note in figure A.5d that this new file name appears under Memory File in the Simulation
Sources list. Click on it; this opens the editor. Type the script, and save the file. Finally, in
figure A.5e, change Memory File to TCL.

l)	 Run the Tcl file by selecting Tools > Run Tcl Script and pointing to the Tcl file. The result
is that of figure A.7b.

m)	Now that the simulation is done, play with the simulator by doing parts (h)–(k) of part 4
of this appendix.

6.  Synthesizing the Design

a)	 Under SYNTHESIS, click Run Synthesis.

b)	 When finished, the window of figure A.8a opens. Cancel Implementation for now.

Figure A.8

506	 Appendix A

c)	 Under SYNTHESIS, click on Open Synthesized Design, then open Schematic, which
shows the circuit after synthesis (figure A.8b), which is the circuit that will actually be fitted
and routed in the final (Implementation) phase.

d)	 Select Window > Design Runs or open the Design Runs tab in the lower part of the main
window to see the resources usage. As shown in figure A.8c, three lookup tables (LUTs) and
four flip-flops were employed to build this circuit.

7.  Implementing the Design

a)	 Under IMPLEMENTATION, click Run Implementation.

b)	 When finished, observe that information similar to that in figures A.8b and A.8c is given
here.

c)	 Observe also in the Project Summary window (click if it is not open) that now Synthe-
sis Status = Complete and Implementation Status = Complete. The resources usage is also
summarized at the bottom of the screen.

8.  Doing Functional Simulation with Testbench

Follow this appendix’s part 4, except for part 4(g), in which you must select one of the
following:

Simulation > Run Simulation > Run Post-Synthesis Functional Simulation or

Simulation > Run Simulation > Run Post-Implementation Functional Simulation.

9.  Doing Functional Simulation with Tcl Script

Follow part 5, except for part 5(d), in which you must select one of the following:

Simulation > Run Simulation > Run Post-Synthesis Functional Simulation or

Simulation > Run Simulation > Run Post-Implementation Functional Simulation.

10.  Doing Timing Simulation with Testbench

Follow part 4, except for part 4(g), in which you must select one of the following:

Simulation > Run Simulation > Run Post-Synthesis Timing Simulation or

Simulation > Run Simulation > Run Post-Implementation Timing Simulation.

Timing simulation results are shown in figure A.9a. In figure A.9b, a zoomed-in view is
shown, so propagation delays can be clearly observed.

Vivado Tutorial	 507

11.  Assigning Pins

a)	 Select Flow > Open Implemented Design.

b)	 Select Window > I/O Ports or click the I/O Ports tab at the bottom of the screen, which
leads to figure A.10.

c)	 In the Package Pin column, enter the names of the pins to which the circuit ports should
be routed. Mark them as Fixed.

d)	 Update the design by selecting Implementation > Run Implementation (this will include
resynthesis).

12.  Programming the FPGA

a)	 Select Flow > Open Implemented Design.

b)	 Under PROGRAM AND DEBUG, select Generate Bit Stream.

c)	 Under PROGRAM AND DEBUG, select Open Hardware Manager to program the
FPGA.

d)	 Finally, play with the FPGA board to verify whether the implementation works as
expected.

Figure A.9

508	 Appendix A

Appendix A1. Some Important Tcl Commands for Vivado

•	 Command add_wave: Adds waveforms to the wave pane.

Examples:

add_wave clk Adds wave clk to the wave pane.

add_wave clk -after_wave rst Adds wave clk to the wave pane after the rst wave.

add_wave clk inp outp Adds waves clk, inp, and outp to the wave pane.

add_wave / Adds all ports in the design to the wave pane.

add_wave sum –radix dec Adds wave sum to pane with dec radix.

Note: Allowed radix values are bin (default), unsigned, dec (signed decimal), hex, oct, ascii.

•	 Command add_force: Defines the shape and radix of the waveforms.

Examples:

add_force clk {1 0} {0 40} –repeat_every 80 –cancel_after 2000

Wave clk has value = 1 at time = 0, then 0 at 40 ns, repeats after 80 ns, resulting T = 80 ns,
and stops after 2 μs.

add_force clk {1} {0 40} –repeat_every 80 –cancel_after 2000

Same as above (time = 0 does not need to be specified).

add_force inp1 {2} {5 40} –radix unsigned

Wave inp1 is 2 at time = 0, then 5 for time = 40 ns and higher, with unsigned radix (see
radix options above).

add_force inp2 {–3} {3 40} {–8 250} –radix dec

Figure A.10

Vivado Tutorial	 509

Wave inp2 is –3 at time = 0, 3 at 40 ns, then –8 at 250 ns, signed decimal radix.

•	 Command launch_simulation: Opens a simulation.

•	 Command run: Runs a simulation.

Examples:

run 700 ns Runs simulation for 700 ns.

run 700 Same as above (default time unit is ns).

•	 Command close_sim –force. Ends simulation without saving waveforms.

•	 Command restart: Restarts a simulation.

•	 Command current_time: Gets the current time in the simulation.

•	 Command open_project: Opens a project.

Example: open_project c:/xilinx/my_designs/registered_adder.xpr

•	 Command open_report: Displays or copies to an output file the contents of an RPX file.

Examples:

open_report –file results1 design1.rpx Copies the contents of design1.rpx to file results1.

open_report design1.rpx Shows the contents of design1.rpx in the Tcl console.

Tcl script example: See figure A.1e, which contains the stimuli of figure A.1c.

